Electronic structure of solid nitromethane: Effects of high pressure and molecular vacancies

The combined effect of pressure and molecular vacancies on the atomic structure and electronic properties of solid nitromethane, a prototypical energetic material, is studied at zero temperature. The self-consistent charge density-functional tight-binding method is applied in order to investigate ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2002-07, Vol.117 (2), p.788-799
Hauptverfasser: Margetis, Dionisios, Kaxiras, Efthimios, Elstner, Marcus, Frauenheim, Th, Manaa, M. Riad
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 799
container_issue 2
container_start_page 788
container_title The Journal of chemical physics
container_volume 117
creator Margetis, Dionisios
Kaxiras, Efthimios
Elstner, Marcus
Frauenheim, Th
Manaa, M. Riad
description The combined effect of pressure and molecular vacancies on the atomic structure and electronic properties of solid nitromethane, a prototypical energetic material, is studied at zero temperature. The self-consistent charge density-functional tight-binding method is applied in order to investigate changes induced in the band gap of this system by uniform and uniaxial strain of up to 70%, corresponding to static pressure in the range of up to 200 GPa. The effects of molecular vacancies with densities ranging from 3% to 25% have also been considered. A surprising finding is that uniaxial compression of about 25–40 GPa along the b lattice vector causes the C–H bond to be highly stretched and leads to proton dissociation. This event also occurs under isotropic compression but at much higher pressure, being indicative of a detonation chemistry which is preferential to the pressure anisotropy. We also find that the band gap, although evidently dependent on the applied strain, crystal anisotropy and vacancy density, is not reduced considerably for electronic excitations to be dominant, in agreement with other recent first-principles studies.
doi_str_mv 10.1063/1.1466830
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1466830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1466830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-7fde3e4a0634fea3814d89c1fa5cabf1ab46258812b58a24e68d1044b42a6b793</originalsourceid><addsrcrecordid>eNotkEtLxDAUhYMoWEcX_oNsXXS8N03T1J0M9QEDbnQnlNs0sZE-hqQV_Pd2cFZn8X0cDoexW4QtgsrucYtSKZ3BGUsQdJkWqoRzlgAITEsF6pJdxfgNAFgImbDPqrdmDtPoDY9zWMy8BMsnx-PU-5aPfmWDnTsa7QOvnFvleMSd_-r4IdgYjz6NLR-mtWnpKfAfMjQab-M1u3DUR3tzyg37eKredy_p_u35dfe4T41QYk4L19rMSlr3S2cp0yhbXRp0lBtqHFIjlci1RtHkmoS0SrcIUjZSkGqKMtuwu_9eE6YYg3X1IfiBwm-NUB9vqbE-3ZL9AepiVgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electronic structure of solid nitromethane: Effects of high pressure and molecular vacancies</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Margetis, Dionisios ; Kaxiras, Efthimios ; Elstner, Marcus ; Frauenheim, Th ; Manaa, M. Riad</creator><creatorcontrib>Margetis, Dionisios ; Kaxiras, Efthimios ; Elstner, Marcus ; Frauenheim, Th ; Manaa, M. Riad</creatorcontrib><description>The combined effect of pressure and molecular vacancies on the atomic structure and electronic properties of solid nitromethane, a prototypical energetic material, is studied at zero temperature. The self-consistent charge density-functional tight-binding method is applied in order to investigate changes induced in the band gap of this system by uniform and uniaxial strain of up to 70%, corresponding to static pressure in the range of up to 200 GPa. The effects of molecular vacancies with densities ranging from 3% to 25% have also been considered. A surprising finding is that uniaxial compression of about 25–40 GPa along the b lattice vector causes the C–H bond to be highly stretched and leads to proton dissociation. This event also occurs under isotropic compression but at much higher pressure, being indicative of a detonation chemistry which is preferential to the pressure anisotropy. We also find that the band gap, although evidently dependent on the applied strain, crystal anisotropy and vacancy density, is not reduced considerably for electronic excitations to be dominant, in agreement with other recent first-principles studies.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1466830</identifier><language>eng</language><ispartof>The Journal of chemical physics, 2002-07, Vol.117 (2), p.788-799</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-7fde3e4a0634fea3814d89c1fa5cabf1ab46258812b58a24e68d1044b42a6b793</citedby><cites>FETCH-LOGICAL-c262t-7fde3e4a0634fea3814d89c1fa5cabf1ab46258812b58a24e68d1044b42a6b793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Margetis, Dionisios</creatorcontrib><creatorcontrib>Kaxiras, Efthimios</creatorcontrib><creatorcontrib>Elstner, Marcus</creatorcontrib><creatorcontrib>Frauenheim, Th</creatorcontrib><creatorcontrib>Manaa, M. Riad</creatorcontrib><title>Electronic structure of solid nitromethane: Effects of high pressure and molecular vacancies</title><title>The Journal of chemical physics</title><description>The combined effect of pressure and molecular vacancies on the atomic structure and electronic properties of solid nitromethane, a prototypical energetic material, is studied at zero temperature. The self-consistent charge density-functional tight-binding method is applied in order to investigate changes induced in the band gap of this system by uniform and uniaxial strain of up to 70%, corresponding to static pressure in the range of up to 200 GPa. The effects of molecular vacancies with densities ranging from 3% to 25% have also been considered. A surprising finding is that uniaxial compression of about 25–40 GPa along the b lattice vector causes the C–H bond to be highly stretched and leads to proton dissociation. This event also occurs under isotropic compression but at much higher pressure, being indicative of a detonation chemistry which is preferential to the pressure anisotropy. We also find that the band gap, although evidently dependent on the applied strain, crystal anisotropy and vacancy density, is not reduced considerably for electronic excitations to be dominant, in agreement with other recent first-principles studies.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNotkEtLxDAUhYMoWEcX_oNsXXS8N03T1J0M9QEDbnQnlNs0sZE-hqQV_Pd2cFZn8X0cDoexW4QtgsrucYtSKZ3BGUsQdJkWqoRzlgAITEsF6pJdxfgNAFgImbDPqrdmDtPoDY9zWMy8BMsnx-PU-5aPfmWDnTsa7QOvnFvleMSd_-r4IdgYjz6NLR-mtWnpKfAfMjQab-M1u3DUR3tzyg37eKredy_p_u35dfe4T41QYk4L19rMSlr3S2cp0yhbXRp0lBtqHFIjlci1RtHkmoS0SrcIUjZSkGqKMtuwu_9eE6YYg3X1IfiBwm-NUB9vqbE-3ZL9AepiVgA</recordid><startdate>20020708</startdate><enddate>20020708</enddate><creator>Margetis, Dionisios</creator><creator>Kaxiras, Efthimios</creator><creator>Elstner, Marcus</creator><creator>Frauenheim, Th</creator><creator>Manaa, M. Riad</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020708</creationdate><title>Electronic structure of solid nitromethane: Effects of high pressure and molecular vacancies</title><author>Margetis, Dionisios ; Kaxiras, Efthimios ; Elstner, Marcus ; Frauenheim, Th ; Manaa, M. Riad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-7fde3e4a0634fea3814d89c1fa5cabf1ab46258812b58a24e68d1044b42a6b793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Margetis, Dionisios</creatorcontrib><creatorcontrib>Kaxiras, Efthimios</creatorcontrib><creatorcontrib>Elstner, Marcus</creatorcontrib><creatorcontrib>Frauenheim, Th</creatorcontrib><creatorcontrib>Manaa, M. Riad</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Margetis, Dionisios</au><au>Kaxiras, Efthimios</au><au>Elstner, Marcus</au><au>Frauenheim, Th</au><au>Manaa, M. Riad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic structure of solid nitromethane: Effects of high pressure and molecular vacancies</atitle><jtitle>The Journal of chemical physics</jtitle><date>2002-07-08</date><risdate>2002</risdate><volume>117</volume><issue>2</issue><spage>788</spage><epage>799</epage><pages>788-799</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The combined effect of pressure and molecular vacancies on the atomic structure and electronic properties of solid nitromethane, a prototypical energetic material, is studied at zero temperature. The self-consistent charge density-functional tight-binding method is applied in order to investigate changes induced in the band gap of this system by uniform and uniaxial strain of up to 70%, corresponding to static pressure in the range of up to 200 GPa. The effects of molecular vacancies with densities ranging from 3% to 25% have also been considered. A surprising finding is that uniaxial compression of about 25–40 GPa along the b lattice vector causes the C–H bond to be highly stretched and leads to proton dissociation. This event also occurs under isotropic compression but at much higher pressure, being indicative of a detonation chemistry which is preferential to the pressure anisotropy. We also find that the band gap, although evidently dependent on the applied strain, crystal anisotropy and vacancy density, is not reduced considerably for electronic excitations to be dominant, in agreement with other recent first-principles studies.</abstract><doi>10.1063/1.1466830</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2002-07, Vol.117 (2), p.788-799
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_1466830
source AIP Journals Complete; AIP Digital Archive
title Electronic structure of solid nitromethane: Effects of high pressure and molecular vacancies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20structure%20of%20solid%20nitromethane:%20Effects%20of%20high%20pressure%20and%20molecular%20vacancies&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Margetis,%20Dionisios&rft.date=2002-07-08&rft.volume=117&rft.issue=2&rft.spage=788&rft.epage=799&rft.pages=788-799&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1466830&rft_dat=%3Ccrossref%3E10_1063_1_1466830%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true