Electronic structure of solid nitromethane: Effects of high pressure and molecular vacancies
The combined effect of pressure and molecular vacancies on the atomic structure and electronic properties of solid nitromethane, a prototypical energetic material, is studied at zero temperature. The self-consistent charge density-functional tight-binding method is applied in order to investigate ch...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2002-07, Vol.117 (2), p.788-799 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 799 |
---|---|
container_issue | 2 |
container_start_page | 788 |
container_title | The Journal of chemical physics |
container_volume | 117 |
creator | Margetis, Dionisios Kaxiras, Efthimios Elstner, Marcus Frauenheim, Th Manaa, M. Riad |
description | The combined effect of pressure and molecular vacancies on the atomic structure and electronic properties of solid nitromethane, a prototypical energetic material, is studied at zero temperature. The self-consistent charge density-functional tight-binding method is applied in order to investigate changes induced in the band gap of this system by uniform and uniaxial strain of up to 70%, corresponding to static pressure in the range of up to 200 GPa. The effects of molecular vacancies with densities ranging from 3% to 25% have also been considered. A surprising finding is that uniaxial compression of about 25–40 GPa along the b lattice vector causes the C–H bond to be highly stretched and leads to proton dissociation. This event also occurs under isotropic compression but at much higher pressure, being indicative of a detonation chemistry which is preferential to the pressure anisotropy. We also find that the band gap, although evidently dependent on the applied strain, crystal anisotropy and vacancy density, is not reduced considerably for electronic excitations to be dominant, in agreement with other recent first-principles studies. |
doi_str_mv | 10.1063/1.1466830 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1466830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1466830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-7fde3e4a0634fea3814d89c1fa5cabf1ab46258812b58a24e68d1044b42a6b793</originalsourceid><addsrcrecordid>eNotkEtLxDAUhYMoWEcX_oNsXXS8N03T1J0M9QEDbnQnlNs0sZE-hqQV_Pd2cFZn8X0cDoexW4QtgsrucYtSKZ3BGUsQdJkWqoRzlgAITEsF6pJdxfgNAFgImbDPqrdmDtPoDY9zWMy8BMsnx-PU-5aPfmWDnTsa7QOvnFvleMSd_-r4IdgYjz6NLR-mtWnpKfAfMjQab-M1u3DUR3tzyg37eKredy_p_u35dfe4T41QYk4L19rMSlr3S2cp0yhbXRp0lBtqHFIjlci1RtHkmoS0SrcIUjZSkGqKMtuwu_9eE6YYg3X1IfiBwm-NUB9vqbE-3ZL9AepiVgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electronic structure of solid nitromethane: Effects of high pressure and molecular vacancies</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Margetis, Dionisios ; Kaxiras, Efthimios ; Elstner, Marcus ; Frauenheim, Th ; Manaa, M. Riad</creator><creatorcontrib>Margetis, Dionisios ; Kaxiras, Efthimios ; Elstner, Marcus ; Frauenheim, Th ; Manaa, M. Riad</creatorcontrib><description>The combined effect of pressure and molecular vacancies on the atomic structure and electronic properties of solid nitromethane, a prototypical energetic material, is studied at zero temperature. The self-consistent charge density-functional tight-binding method is applied in order to investigate changes induced in the band gap of this system by uniform and uniaxial strain of up to 70%, corresponding to static pressure in the range of up to 200 GPa. The effects of molecular vacancies with densities ranging from 3% to 25% have also been considered. A surprising finding is that uniaxial compression of about 25–40 GPa along the b lattice vector causes the C–H bond to be highly stretched and leads to proton dissociation. This event also occurs under isotropic compression but at much higher pressure, being indicative of a detonation chemistry which is preferential to the pressure anisotropy. We also find that the band gap, although evidently dependent on the applied strain, crystal anisotropy and vacancy density, is not reduced considerably for electronic excitations to be dominant, in agreement with other recent first-principles studies.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1466830</identifier><language>eng</language><ispartof>The Journal of chemical physics, 2002-07, Vol.117 (2), p.788-799</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-7fde3e4a0634fea3814d89c1fa5cabf1ab46258812b58a24e68d1044b42a6b793</citedby><cites>FETCH-LOGICAL-c262t-7fde3e4a0634fea3814d89c1fa5cabf1ab46258812b58a24e68d1044b42a6b793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Margetis, Dionisios</creatorcontrib><creatorcontrib>Kaxiras, Efthimios</creatorcontrib><creatorcontrib>Elstner, Marcus</creatorcontrib><creatorcontrib>Frauenheim, Th</creatorcontrib><creatorcontrib>Manaa, M. Riad</creatorcontrib><title>Electronic structure of solid nitromethane: Effects of high pressure and molecular vacancies</title><title>The Journal of chemical physics</title><description>The combined effect of pressure and molecular vacancies on the atomic structure and electronic properties of solid nitromethane, a prototypical energetic material, is studied at zero temperature. The self-consistent charge density-functional tight-binding method is applied in order to investigate changes induced in the band gap of this system by uniform and uniaxial strain of up to 70%, corresponding to static pressure in the range of up to 200 GPa. The effects of molecular vacancies with densities ranging from 3% to 25% have also been considered. A surprising finding is that uniaxial compression of about 25–40 GPa along the b lattice vector causes the C–H bond to be highly stretched and leads to proton dissociation. This event also occurs under isotropic compression but at much higher pressure, being indicative of a detonation chemistry which is preferential to the pressure anisotropy. We also find that the band gap, although evidently dependent on the applied strain, crystal anisotropy and vacancy density, is not reduced considerably for electronic excitations to be dominant, in agreement with other recent first-principles studies.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNotkEtLxDAUhYMoWEcX_oNsXXS8N03T1J0M9QEDbnQnlNs0sZE-hqQV_Pd2cFZn8X0cDoexW4QtgsrucYtSKZ3BGUsQdJkWqoRzlgAITEsF6pJdxfgNAFgImbDPqrdmDtPoDY9zWMy8BMsnx-PU-5aPfmWDnTsa7QOvnFvleMSd_-r4IdgYjz6NLR-mtWnpKfAfMjQab-M1u3DUR3tzyg37eKredy_p_u35dfe4T41QYk4L19rMSlr3S2cp0yhbXRp0lBtqHFIjlci1RtHkmoS0SrcIUjZSkGqKMtuwu_9eE6YYg3X1IfiBwm-NUB9vqbE-3ZL9AepiVgA</recordid><startdate>20020708</startdate><enddate>20020708</enddate><creator>Margetis, Dionisios</creator><creator>Kaxiras, Efthimios</creator><creator>Elstner, Marcus</creator><creator>Frauenheim, Th</creator><creator>Manaa, M. Riad</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020708</creationdate><title>Electronic structure of solid nitromethane: Effects of high pressure and molecular vacancies</title><author>Margetis, Dionisios ; Kaxiras, Efthimios ; Elstner, Marcus ; Frauenheim, Th ; Manaa, M. Riad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-7fde3e4a0634fea3814d89c1fa5cabf1ab46258812b58a24e68d1044b42a6b793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Margetis, Dionisios</creatorcontrib><creatorcontrib>Kaxiras, Efthimios</creatorcontrib><creatorcontrib>Elstner, Marcus</creatorcontrib><creatorcontrib>Frauenheim, Th</creatorcontrib><creatorcontrib>Manaa, M. Riad</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Margetis, Dionisios</au><au>Kaxiras, Efthimios</au><au>Elstner, Marcus</au><au>Frauenheim, Th</au><au>Manaa, M. Riad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic structure of solid nitromethane: Effects of high pressure and molecular vacancies</atitle><jtitle>The Journal of chemical physics</jtitle><date>2002-07-08</date><risdate>2002</risdate><volume>117</volume><issue>2</issue><spage>788</spage><epage>799</epage><pages>788-799</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The combined effect of pressure and molecular vacancies on the atomic structure and electronic properties of solid nitromethane, a prototypical energetic material, is studied at zero temperature. The self-consistent charge density-functional tight-binding method is applied in order to investigate changes induced in the band gap of this system by uniform and uniaxial strain of up to 70%, corresponding to static pressure in the range of up to 200 GPa. The effects of molecular vacancies with densities ranging from 3% to 25% have also been considered. A surprising finding is that uniaxial compression of about 25–40 GPa along the b lattice vector causes the C–H bond to be highly stretched and leads to proton dissociation. This event also occurs under isotropic compression but at much higher pressure, being indicative of a detonation chemistry which is preferential to the pressure anisotropy. We also find that the band gap, although evidently dependent on the applied strain, crystal anisotropy and vacancy density, is not reduced considerably for electronic excitations to be dominant, in agreement with other recent first-principles studies.</abstract><doi>10.1063/1.1466830</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2002-07, Vol.117 (2), p.788-799 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1466830 |
source | AIP Journals Complete; AIP Digital Archive |
title | Electronic structure of solid nitromethane: Effects of high pressure and molecular vacancies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20structure%20of%20solid%20nitromethane:%20Effects%20of%20high%20pressure%20and%20molecular%20vacancies&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Margetis,%20Dionisios&rft.date=2002-07-08&rft.volume=117&rft.issue=2&rft.spage=788&rft.epage=799&rft.pages=788-799&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1466830&rft_dat=%3Ccrossref%3E10_1063_1_1466830%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |