Relationship between fluence gradient and lateral grain growth in spatially controlled excimer laser crystallization of amorphous silicon films
In order to clarify the relationship between excimer laser fluence gradient and the length of lateral grain growth, the excimer laser fluence used for crystallization is modulated by a beam mask. The crystallized 50-nm-thick a-Si films are secco etched in order to observe the lateral grain growth by...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2000-11, Vol.88 (9), p.4994-4999 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to clarify the relationship between excimer laser fluence gradient and the length of lateral grain growth, the excimer laser fluence used for crystallization is modulated by a beam mask. The crystallized 50-nm-thick a-Si films are secco etched in order to observe the lateral grain growth by scanning electron microscope. The fluence distribution across the pattern is measured by a negative photoresist that has a linear relationship between laser fluence and resist thickness after development. This mapped fluence distribution is utilized to deduce the fluence gradient for each laser energy output. It is shown that lateral growth length increases and the directionality of the grains improves as the fluence gradient increases. Lateral growth length as long as 1.5 μm can be driven in a 50-nm-thick a-Si film by a single excimer laser pulse without any substrate heating. Electrical conductance measurement is used to probe the solidification dynamics. The lateral solidification velocity is estimated to be 7 m/s. A model is proposed to explain the formation of grain microstructure. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.1314303 |