Bulk metallic glass matrix composites

Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic gla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Physics Letters 1997-12, Vol.71 (26), p.3808-3810
Hauptverfasser: Choi-Yim, H., Johnson, W. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3810
container_issue 26
container_start_page 3808
container_title Applied Physics Letters
container_volume 71
creator Choi-Yim, H.
Johnson, W. L.
description Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods.
doi_str_mv 10.1063/1.120512
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_120512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_120512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-a9fdd378ed7b27e0430c476946e81b46264674dbf1c7fedba67651f6230830213</originalsourceid><addsrcrecordid>eNotkE1LxDAURYMoWEfBn1AXgpuO7-UlL-1SB79gwI2uQ5qmWm2nQxNB_72VurpcONwLR4hzhDUC0zWuUYJGeSAyBGMKQiwPRQYAVHCl8VicxPgxVy2JMnF5-9V_5kNIru87n7_1LsZ8cGnqvnM_DvsxdinEU3HUuj6Gs_9cidf7u5fNY7F9fnja3GwLTxpT4aq2aciUoTG1NAEUgVeGK8WhxFqxZMVGNXWL3rShqR0b1tiyJCgJJNJKXCy7Y0ydjX7-9u9-3O2CT1az1opn5mph_DTGOIXW7qducNOPRbB_CizaRQH9AoeES3U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bulk metallic glass matrix composites</title><source>AIP Digital Archive</source><creator>Choi-Yim, H. ; Johnson, W. L.</creator><creatorcontrib>Choi-Yim, H. ; Johnson, W. L.</creatorcontrib><description>Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.120512</identifier><language>eng</language><publisher>United States</publisher><subject>CERAMICS ; COMPOSITE MATERIALS ; COPPER ALLOYS ; CRYSTALLIZATION ; MATERIALS SCIENCE ; MATRIX MATERIALS ; METALLIC GLASSES ; NICKEL ALLOYS ; NIOBIUM ALLOYS ; OPTICAL MICROSCOPY ; REINFORCED MATERIALS ; STRUCTURAL CHEMICAL ANALYSIS ; THERMAL ANALYSIS ; TITANIUM ALLOYS ; X-RAY DIFFRACTION ; ZIRCONIUM ALLOYS</subject><ispartof>Applied Physics Letters, 1997-12, Vol.71 (26), p.3808-3810</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-a9fdd378ed7b27e0430c476946e81b46264674dbf1c7fedba67651f6230830213</citedby><cites>FETCH-LOGICAL-c351t-a9fdd378ed7b27e0430c476946e81b46264674dbf1c7fedba67651f6230830213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/565546$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi-Yim, H.</creatorcontrib><creatorcontrib>Johnson, W. L.</creatorcontrib><title>Bulk metallic glass matrix composites</title><title>Applied Physics Letters</title><description>Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods.</description><subject>CERAMICS</subject><subject>COMPOSITE MATERIALS</subject><subject>COPPER ALLOYS</subject><subject>CRYSTALLIZATION</subject><subject>MATERIALS SCIENCE</subject><subject>MATRIX MATERIALS</subject><subject>METALLIC GLASSES</subject><subject>NICKEL ALLOYS</subject><subject>NIOBIUM ALLOYS</subject><subject>OPTICAL MICROSCOPY</subject><subject>REINFORCED MATERIALS</subject><subject>STRUCTURAL CHEMICAL ANALYSIS</subject><subject>THERMAL ANALYSIS</subject><subject>TITANIUM ALLOYS</subject><subject>X-RAY DIFFRACTION</subject><subject>ZIRCONIUM ALLOYS</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAURYMoWEfBn1AXgpuO7-UlL-1SB79gwI2uQ5qmWm2nQxNB_72VurpcONwLR4hzhDUC0zWuUYJGeSAyBGMKQiwPRQYAVHCl8VicxPgxVy2JMnF5-9V_5kNIru87n7_1LsZ8cGnqvnM_DvsxdinEU3HUuj6Gs_9cidf7u5fNY7F9fnja3GwLTxpT4aq2aciUoTG1NAEUgVeGK8WhxFqxZMVGNXWL3rShqR0b1tiyJCgJJNJKXCy7Y0ydjX7-9u9-3O2CT1az1opn5mph_DTGOIXW7qducNOPRbB_CizaRQH9AoeES3U</recordid><startdate>19971229</startdate><enddate>19971229</enddate><creator>Choi-Yim, H.</creator><creator>Johnson, W. L.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19971229</creationdate><title>Bulk metallic glass matrix composites</title><author>Choi-Yim, H. ; Johnson, W. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-a9fdd378ed7b27e0430c476946e81b46264674dbf1c7fedba67651f6230830213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>CERAMICS</topic><topic>COMPOSITE MATERIALS</topic><topic>COPPER ALLOYS</topic><topic>CRYSTALLIZATION</topic><topic>MATERIALS SCIENCE</topic><topic>MATRIX MATERIALS</topic><topic>METALLIC GLASSES</topic><topic>NICKEL ALLOYS</topic><topic>NIOBIUM ALLOYS</topic><topic>OPTICAL MICROSCOPY</topic><topic>REINFORCED MATERIALS</topic><topic>STRUCTURAL CHEMICAL ANALYSIS</topic><topic>THERMAL ANALYSIS</topic><topic>TITANIUM ALLOYS</topic><topic>X-RAY DIFFRACTION</topic><topic>ZIRCONIUM ALLOYS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi-Yim, H.</creatorcontrib><creatorcontrib>Johnson, W. L.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Applied Physics Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi-Yim, H.</au><au>Johnson, W. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bulk metallic glass matrix composites</atitle><jtitle>Applied Physics Letters</jtitle><date>1997-12-29</date><risdate>1997</risdate><volume>71</volume><issue>26</issue><spage>3808</spage><epage>3810</epage><pages>3808-3810</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods.</abstract><cop>United States</cop><doi>10.1063/1.120512</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied Physics Letters, 1997-12, Vol.71 (26), p.3808-3810
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_120512
source AIP Digital Archive
subjects CERAMICS
COMPOSITE MATERIALS
COPPER ALLOYS
CRYSTALLIZATION
MATERIALS SCIENCE
MATRIX MATERIALS
METALLIC GLASSES
NICKEL ALLOYS
NIOBIUM ALLOYS
OPTICAL MICROSCOPY
REINFORCED MATERIALS
STRUCTURAL CHEMICAL ANALYSIS
THERMAL ANALYSIS
TITANIUM ALLOYS
X-RAY DIFFRACTION
ZIRCONIUM ALLOYS
title Bulk metallic glass matrix composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bulk%20metallic%20glass%20matrix%20composites&rft.jtitle=Applied%20Physics%20Letters&rft.au=Choi-Yim,%20H.&rft.date=1997-12-29&rft.volume=71&rft.issue=26&rft.spage=3808&rft.epage=3810&rft.pages=3808-3810&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.120512&rft_dat=%3Ccrossref_osti_%3E10_1063_1_120512%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true