Blast wave diagnostic for the Petawatt laser system

We report on a diagnostic to measure the trajectory of a blast wave propagating through a plastic target 400 μm thick. This blast wave is generated by the irradiation of the front surface of the target with ∼400 J of 1 μm laser radiation in a 20 ps pulse focused to a ∼50 μm diameter spot, which prod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of Scientific Instruments 1999-01, Vol.70 (1), p.806-809
Hauptverfasser: Budil, K. S., Gold, D. M., Estabrook, K. G., Remington, B. A., Kane, J., Bell, P. M., Pennington, D., Brown, C., Hatchett, S., Koch, J. A., Key, M. H., Perry, M. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 809
container_issue 1
container_start_page 806
container_title Review of Scientific Instruments
container_volume 70
creator Budil, K. S.
Gold, D. M.
Estabrook, K. G.
Remington, B. A.
Kane, J.
Bell, P. M.
Pennington, D.
Brown, C.
Hatchett, S.
Koch, J. A.
Key, M. H.
Perry, M. D.
description We report on a diagnostic to measure the trajectory of a blast wave propagating through a plastic target 400 μm thick. This blast wave is generated by the irradiation of the front surface of the target with ∼400 J of 1 μm laser radiation in a 20 ps pulse focused to a ∼50 μm diameter spot, which produces an intensity in excess of 10 18   W/cm 2 . These conditions approximate a point explosion and a blast wave is predicted to be generated with an initial pressure nearing 1 Gbar which decays as it travels approximately radially outward from the interaction region. We have utilized streaked optical pyrometry of the blast front to determine its time of arrival at the rear surface of the target. Applications of a self-similar Taylor–Sedov blast wave solution allows the amount of energy deposited to be estimated. The experiment, LASNEX design simulations and initial results are discussed.
doi_str_mv 10.1063/1.1149277
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1149277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>rsi</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-304b160ae05b19fc2ed81ce5a72003594387839d9d1a4247acc2d7742d9eb51f3</originalsourceid><addsrcrecordid>eNqd0EtLAzEUBeAgCo7Vhf8gLhWm5uYxmSy1-IKCLnQd0uSOHWlnShJa-u-doQX33s3dfBwOh5BrYFNglbiHKYA0XOsTUgCrTakrLk5JwZiQZaVlfU4uUvphwymAgojHlUuZ7twWaWjdd9en3Hra9JHmJdIPzG7ncqaDwkjTPmVcX5Kzxq0SXh3_hHw9P33OXsv5-8vb7GFeeqHqXAomF1Axh0wtwDSeY6jBo3KaD22UkaLWtTDBBHCSS-2850FryYPBhYJGTMjNIXfsZJNvM_ql77sOfbbcqEqpwdwejI99ShEbu4nt2sW9BWbHRSzY4yKDvTvYMcrltu_-h7d9_IN2ExrxC5wGbXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Blast wave diagnostic for the Petawatt laser system</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Budil, K. S. ; Gold, D. M. ; Estabrook, K. G. ; Remington, B. A. ; Kane, J. ; Bell, P. M. ; Pennington, D. ; Brown, C. ; Hatchett, S. ; Koch, J. A. ; Key, M. H. ; Perry, M. D.</creator><creatorcontrib>Budil, K. S. ; Gold, D. M. ; Estabrook, K. G. ; Remington, B. A. ; Kane, J. ; Bell, P. M. ; Pennington, D. ; Brown, C. ; Hatchett, S. ; Koch, J. A. ; Key, M. H. ; Perry, M. D.</creatorcontrib><description>We report on a diagnostic to measure the trajectory of a blast wave propagating through a plastic target 400 μm thick. This blast wave is generated by the irradiation of the front surface of the target with ∼400 J of 1 μm laser radiation in a 20 ps pulse focused to a ∼50 μm diameter spot, which produces an intensity in excess of 10 18   W/cm 2 . These conditions approximate a point explosion and a blast wave is predicted to be generated with an initial pressure nearing 1 Gbar which decays as it travels approximately radially outward from the interaction region. We have utilized streaked optical pyrometry of the blast front to determine its time of arrival at the rear surface of the target. Applications of a self-similar Taylor–Sedov blast wave solution allows the amount of energy deposited to be estimated. The experiment, LASNEX design simulations and initial results are discussed.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.1149277</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION ; DETONATION WAVES ; LASER RADIATION ; LASER-PRODUCED PLASMA ; PLASMA DIAGNOSTICS ; PLASTICS ; PRESSURE DEPENDENCE ; PRESSURE MEASUREMENT ; SHOCK WAVES ; VERY HIGH PRESSURE</subject><ispartof>Review of Scientific Instruments, 1999-01, Vol.70 (1), p.806-809</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-304b160ae05b19fc2ed81ce5a72003594387839d9d1a4247acc2d7742d9eb51f3</citedby><cites>FETCH-LOGICAL-c358t-304b160ae05b19fc2ed81ce5a72003594387839d9d1a4247acc2d7742d9eb51f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.1149277$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,885,1559,4512,23930,23931,25140,27924,27925,76384,76390</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/295655$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Budil, K. S.</creatorcontrib><creatorcontrib>Gold, D. M.</creatorcontrib><creatorcontrib>Estabrook, K. G.</creatorcontrib><creatorcontrib>Remington, B. A.</creatorcontrib><creatorcontrib>Kane, J.</creatorcontrib><creatorcontrib>Bell, P. M.</creatorcontrib><creatorcontrib>Pennington, D.</creatorcontrib><creatorcontrib>Brown, C.</creatorcontrib><creatorcontrib>Hatchett, S.</creatorcontrib><creatorcontrib>Koch, J. A.</creatorcontrib><creatorcontrib>Key, M. H.</creatorcontrib><creatorcontrib>Perry, M. D.</creatorcontrib><title>Blast wave diagnostic for the Petawatt laser system</title><title>Review of Scientific Instruments</title><description>We report on a diagnostic to measure the trajectory of a blast wave propagating through a plastic target 400 μm thick. This blast wave is generated by the irradiation of the front surface of the target with ∼400 J of 1 μm laser radiation in a 20 ps pulse focused to a ∼50 μm diameter spot, which produces an intensity in excess of 10 18   W/cm 2 . These conditions approximate a point explosion and a blast wave is predicted to be generated with an initial pressure nearing 1 Gbar which decays as it travels approximately radially outward from the interaction region. We have utilized streaked optical pyrometry of the blast front to determine its time of arrival at the rear surface of the target. Applications of a self-similar Taylor–Sedov blast wave solution allows the amount of energy deposited to be estimated. The experiment, LASNEX design simulations and initial results are discussed.</description><subject>70 PLASMA PHYSICS AND FUSION</subject><subject>DETONATION WAVES</subject><subject>LASER RADIATION</subject><subject>LASER-PRODUCED PLASMA</subject><subject>PLASMA DIAGNOSTICS</subject><subject>PLASTICS</subject><subject>PRESSURE DEPENDENCE</subject><subject>PRESSURE MEASUREMENT</subject><subject>SHOCK WAVES</subject><subject>VERY HIGH PRESSURE</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEUBeAgCo7Vhf8gLhWm5uYxmSy1-IKCLnQd0uSOHWlnShJa-u-doQX33s3dfBwOh5BrYFNglbiHKYA0XOsTUgCrTakrLk5JwZiQZaVlfU4uUvphwymAgojHlUuZ7twWaWjdd9en3Hra9JHmJdIPzG7ncqaDwkjTPmVcX5Kzxq0SXh3_hHw9P33OXsv5-8vb7GFeeqHqXAomF1Axh0wtwDSeY6jBo3KaD22UkaLWtTDBBHCSS-2850FryYPBhYJGTMjNIXfsZJNvM_ql77sOfbbcqEqpwdwejI99ShEbu4nt2sW9BWbHRSzY4yKDvTvYMcrltu_-h7d9_IN2ExrxC5wGbXw</recordid><startdate>199901</startdate><enddate>199901</enddate><creator>Budil, K. S.</creator><creator>Gold, D. M.</creator><creator>Estabrook, K. G.</creator><creator>Remington, B. A.</creator><creator>Kane, J.</creator><creator>Bell, P. M.</creator><creator>Pennington, D.</creator><creator>Brown, C.</creator><creator>Hatchett, S.</creator><creator>Koch, J. A.</creator><creator>Key, M. H.</creator><creator>Perry, M. D.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>199901</creationdate><title>Blast wave diagnostic for the Petawatt laser system</title><author>Budil, K. S. ; Gold, D. M. ; Estabrook, K. G. ; Remington, B. A. ; Kane, J. ; Bell, P. M. ; Pennington, D. ; Brown, C. ; Hatchett, S. ; Koch, J. A. ; Key, M. H. ; Perry, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-304b160ae05b19fc2ed81ce5a72003594387839d9d1a4247acc2d7742d9eb51f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>70 PLASMA PHYSICS AND FUSION</topic><topic>DETONATION WAVES</topic><topic>LASER RADIATION</topic><topic>LASER-PRODUCED PLASMA</topic><topic>PLASMA DIAGNOSTICS</topic><topic>PLASTICS</topic><topic>PRESSURE DEPENDENCE</topic><topic>PRESSURE MEASUREMENT</topic><topic>SHOCK WAVES</topic><topic>VERY HIGH PRESSURE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Budil, K. S.</creatorcontrib><creatorcontrib>Gold, D. M.</creatorcontrib><creatorcontrib>Estabrook, K. G.</creatorcontrib><creatorcontrib>Remington, B. A.</creatorcontrib><creatorcontrib>Kane, J.</creatorcontrib><creatorcontrib>Bell, P. M.</creatorcontrib><creatorcontrib>Pennington, D.</creatorcontrib><creatorcontrib>Brown, C.</creatorcontrib><creatorcontrib>Hatchett, S.</creatorcontrib><creatorcontrib>Koch, J. A.</creatorcontrib><creatorcontrib>Key, M. H.</creatorcontrib><creatorcontrib>Perry, M. D.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Review of Scientific Instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budil, K. S.</au><au>Gold, D. M.</au><au>Estabrook, K. G.</au><au>Remington, B. A.</au><au>Kane, J.</au><au>Bell, P. M.</au><au>Pennington, D.</au><au>Brown, C.</au><au>Hatchett, S.</au><au>Koch, J. A.</au><au>Key, M. H.</au><au>Perry, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blast wave diagnostic for the Petawatt laser system</atitle><jtitle>Review of Scientific Instruments</jtitle><date>1999-01</date><risdate>1999</risdate><volume>70</volume><issue>1</issue><spage>806</spage><epage>809</epage><pages>806-809</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>We report on a diagnostic to measure the trajectory of a blast wave propagating through a plastic target 400 μm thick. This blast wave is generated by the irradiation of the front surface of the target with ∼400 J of 1 μm laser radiation in a 20 ps pulse focused to a ∼50 μm diameter spot, which produces an intensity in excess of 10 18   W/cm 2 . These conditions approximate a point explosion and a blast wave is predicted to be generated with an initial pressure nearing 1 Gbar which decays as it travels approximately radially outward from the interaction region. We have utilized streaked optical pyrometry of the blast front to determine its time of arrival at the rear surface of the target. Applications of a self-similar Taylor–Sedov blast wave solution allows the amount of energy deposited to be estimated. The experiment, LASNEX design simulations and initial results are discussed.</abstract><cop>United States</cop><doi>10.1063/1.1149277</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of Scientific Instruments, 1999-01, Vol.70 (1), p.806-809
issn 0034-6748
1089-7623
language eng
recordid cdi_crossref_primary_10_1063_1_1149277
source AIP Journals Complete; AIP Digital Archive
subjects 70 PLASMA PHYSICS AND FUSION
DETONATION WAVES
LASER RADIATION
LASER-PRODUCED PLASMA
PLASMA DIAGNOSTICS
PLASTICS
PRESSURE DEPENDENCE
PRESSURE MEASUREMENT
SHOCK WAVES
VERY HIGH PRESSURE
title Blast wave diagnostic for the Petawatt laser system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blast%20wave%20diagnostic%20for%20the%20Petawatt%20laser%20system&rft.jtitle=Review%20of%20Scientific%20Instruments&rft.au=Budil,%20K.%20S.&rft.date=1999-01&rft.volume=70&rft.issue=1&rft.spage=806&rft.epage=809&rft.pages=806-809&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.1149277&rft_dat=%3Cscitation_cross%3Ersi%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true