30% external quantum efficiency from surface textured, thin-film light-emitting diodes
There is a significant gap between the internal efficiency of light-emitting diodes (LEDs) and their external efficiency. The reason for this shortfall is the narrow escape cone for light in high refractive index semiconductors. We have found that by separating thin-film LEDs from their substrates (...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 1993-10, Vol.63 (16), p.2174-2176 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2176 |
---|---|
container_issue | 16 |
container_start_page | 2174 |
container_title | Applied physics letters |
container_volume | 63 |
creator | SCHNITZER, I YABLONOVITCH, E CANEAU, C GMITTER, T. J SCHERER, A |
description | There is a significant gap between the internal efficiency of light-emitting diodes (LEDs) and their external efficiency. The reason for this shortfall is the narrow escape cone for light in high refractive index semiconductors. We have found that by separating thin-film LEDs from their substrates (by epitaxial lift-off, for example), it is much easier for light to escape from the LED structure and thereby avoid absorption. Moreover, by nanotexturing the thin-film surface using ‘‘natural lithography,’’ the light ray dynamics becomes chaotic, and the optical phase-space distribution becomes ‘‘ergodic,’’ allowing even more of the light to find the escape cone. We have demonstrated 30% external efficiency in GaAs LEDs employing these principles. |
doi_str_mv | 10.1063/1.110575 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_110575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3838567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2715-83560f80ad2e937a257a9887896543b1074565d57985cb072f77ec7fc1bb6ec63</originalsourceid><addsrcrecordid>eNo9kM1KAzEYRYMoWKvgI2Sh4MLUfJMmX2YpxT8ouFG3QyaTtJH5qUkG7Ns7UnF1uXC4cA8hl8AXwJW4gwUAlyiPyAw4IhMA-pjMOOeCqVLCKTlL6XOqshBiRj4Ev6buO7vYm5Z-jabPY0ed98EG19s99XHoaBqjN9bRPJFjdM0tzdvQMx_ajrZhs83MdSHn0G9oE4bGpXNy4k2b3MVfzsn748Pb6pmtX59eVvdrZgsEybSQinvNTVO4UqApJJpSa9SlkktRTweWUslGYqmlrTkWHtFZ9BbqWjmrxJzcHHZtHFKKzle7GDoT9xXw6tdHBdXBx4ReHdCdSda0PprehvTPCy20VCh-ADFrXgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>30% external quantum efficiency from surface textured, thin-film light-emitting diodes</title><source>AIP Digital Archive</source><creator>SCHNITZER, I ; YABLONOVITCH, E ; CANEAU, C ; GMITTER, T. J ; SCHERER, A</creator><creatorcontrib>SCHNITZER, I ; YABLONOVITCH, E ; CANEAU, C ; GMITTER, T. J ; SCHERER, A</creatorcontrib><description>There is a significant gap between the internal efficiency of light-emitting diodes (LEDs) and their external efficiency. The reason for this shortfall is the narrow escape cone for light in high refractive index semiconductors. We have found that by separating thin-film LEDs from their substrates (by epitaxial lift-off, for example), it is much easier for light to escape from the LED structure and thereby avoid absorption. Moreover, by nanotexturing the thin-film surface using ‘‘natural lithography,’’ the light ray dynamics becomes chaotic, and the optical phase-space distribution becomes ‘‘ergodic,’’ allowing even more of the light to find the escape cone. We have demonstrated 30% external efficiency in GaAs LEDs employing these principles.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.110575</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Applied sciences ; Electronics ; Exact sciences and technology ; Optoelectronic devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Applied physics letters, 1993-10, Vol.63 (16), p.2174-2176</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2715-83560f80ad2e937a257a9887896543b1074565d57985cb072f77ec7fc1bb6ec63</citedby><cites>FETCH-LOGICAL-c2715-83560f80ad2e937a257a9887896543b1074565d57985cb072f77ec7fc1bb6ec63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3838567$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SCHNITZER, I</creatorcontrib><creatorcontrib>YABLONOVITCH, E</creatorcontrib><creatorcontrib>CANEAU, C</creatorcontrib><creatorcontrib>GMITTER, T. J</creatorcontrib><creatorcontrib>SCHERER, A</creatorcontrib><title>30% external quantum efficiency from surface textured, thin-film light-emitting diodes</title><title>Applied physics letters</title><description>There is a significant gap between the internal efficiency of light-emitting diodes (LEDs) and their external efficiency. The reason for this shortfall is the narrow escape cone for light in high refractive index semiconductors. We have found that by separating thin-film LEDs from their substrates (by epitaxial lift-off, for example), it is much easier for light to escape from the LED structure and thereby avoid absorption. Moreover, by nanotexturing the thin-film surface using ‘‘natural lithography,’’ the light ray dynamics becomes chaotic, and the optical phase-space distribution becomes ‘‘ergodic,’’ allowing even more of the light to find the escape cone. We have demonstrated 30% external efficiency in GaAs LEDs employing these principles.</description><subject>Applied sciences</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Optoelectronic devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEYRYMoWKvgI2Sh4MLUfJMmX2YpxT8ouFG3QyaTtJH5qUkG7Ns7UnF1uXC4cA8hl8AXwJW4gwUAlyiPyAw4IhMA-pjMOOeCqVLCKTlL6XOqshBiRj4Ev6buO7vYm5Z-jabPY0ed98EG19s99XHoaBqjN9bRPJFjdM0tzdvQMx_ajrZhs83MdSHn0G9oE4bGpXNy4k2b3MVfzsn748Pb6pmtX59eVvdrZgsEybSQinvNTVO4UqApJJpSa9SlkktRTweWUslGYqmlrTkWHtFZ9BbqWjmrxJzcHHZtHFKKzle7GDoT9xXw6tdHBdXBx4ReHdCdSda0PprehvTPCy20VCh-ADFrXgQ</recordid><startdate>19931018</startdate><enddate>19931018</enddate><creator>SCHNITZER, I</creator><creator>YABLONOVITCH, E</creator><creator>CANEAU, C</creator><creator>GMITTER, T. J</creator><creator>SCHERER, A</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19931018</creationdate><title>30% external quantum efficiency from surface textured, thin-film light-emitting diodes</title><author>SCHNITZER, I ; YABLONOVITCH, E ; CANEAU, C ; GMITTER, T. J ; SCHERER, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2715-83560f80ad2e937a257a9887896543b1074565d57985cb072f77ec7fc1bb6ec63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Optoelectronic devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SCHNITZER, I</creatorcontrib><creatorcontrib>YABLONOVITCH, E</creatorcontrib><creatorcontrib>CANEAU, C</creatorcontrib><creatorcontrib>GMITTER, T. J</creatorcontrib><creatorcontrib>SCHERER, A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCHNITZER, I</au><au>YABLONOVITCH, E</au><au>CANEAU, C</au><au>GMITTER, T. J</au><au>SCHERER, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>30% external quantum efficiency from surface textured, thin-film light-emitting diodes</atitle><jtitle>Applied physics letters</jtitle><date>1993-10-18</date><risdate>1993</risdate><volume>63</volume><issue>16</issue><spage>2174</spage><epage>2176</epage><pages>2174-2176</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>There is a significant gap between the internal efficiency of light-emitting diodes (LEDs) and their external efficiency. The reason for this shortfall is the narrow escape cone for light in high refractive index semiconductors. We have found that by separating thin-film LEDs from their substrates (by epitaxial lift-off, for example), it is much easier for light to escape from the LED structure and thereby avoid absorption. Moreover, by nanotexturing the thin-film surface using ‘‘natural lithography,’’ the light ray dynamics becomes chaotic, and the optical phase-space distribution becomes ‘‘ergodic,’’ allowing even more of the light to find the escape cone. We have demonstrated 30% external efficiency in GaAs LEDs employing these principles.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.110575</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 1993-10, Vol.63 (16), p.2174-2176 |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_110575 |
source | AIP Digital Archive |
subjects | Applied sciences Electronics Exact sciences and technology Optoelectronic devices Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices |
title | 30% external quantum efficiency from surface textured, thin-film light-emitting diodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=30%25%20external%20quantum%20efficiency%20from%20surface%20textured,%20thin-film%20light-emitting%20diodes&rft.jtitle=Applied%20physics%20letters&rft.au=SCHNITZER,%20I&rft.date=1993-10-18&rft.volume=63&rft.issue=16&rft.spage=2174&rft.epage=2176&rft.pages=2174-2176&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.110575&rft_dat=%3Cpascalfrancis_cross%3E3838567%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |