Motion of ions in an electron cyclotron resonance plasma

The motion of ions emerging from an electron-cyclotron-resonance plasma source has been investigated. Trajectories have been calculated by solving the ion equations of motion in a divergent magnetic field and an electrostatic longitudinal accelerating field which has to be evaluated self-consistentl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 1993-11, Vol.63 (21), p.2890-2892
Hauptverfasser: KÖHLER, W. E, RÖMHELD, M, SEEBÖCK, R. J, SKABERNA, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2892
container_issue 21
container_start_page 2890
container_title Applied physics letters
container_volume 63
creator KÖHLER, W. E
RÖMHELD, M
SEEBÖCK, R. J
SKABERNA, S
description The motion of ions emerging from an electron-cyclotron-resonance plasma source has been investigated. Trajectories have been calculated by solving the ion equations of motion in a divergent magnetic field and an electrostatic longitudinal accelerating field which has to be evaluated self-consistently. The trajectory calculations have been combined with a Monte Carlo procedure for choosing the initial ion phase space variables in order to study the propagation of the ion distribution function. It is shown that outside the chamber the spatial profile of this distribution is increasingly broadened with distance from the second magnet due to the diverging magnetic field lines, while at the same time the ions gain energy from the electrostatic field. For an argon plasma a mean ion beam energy of about 16 eV with respect to the plasma source potential results at the target plane in a distance of 60 cm from the source.
doi_str_mv 10.1063/1.110316
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_110316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3880102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-feb89901c728fdc3bbc3ef5501b6e76b26e3cf2368ee73aebb175d2c1c6be7bb3</originalsourceid><addsrcrecordid>eNo9j09LxDAQxYMoWFfBj5CDBy9dMxmbpEdZ_AcrXvRcktkJVLpNSXrZb291xdOb9_gxvCfENag1KIN3sAZQCOZEVKCsrRHAnYpKKYW1aRs4FxelfC220YiVcG9p7tMoU5SLFNmP0o-SB6Y5LzEdaEi_V-aSRj8Sy2nwZe8vxVn0Q-GrP12Jz6fHj81LvX1_ft08bGvSzf1cRw6ubRWQ1S7uCEMg5Ng0CoJha4I2jBQ1Gsds0XMIYJudJiAT2IaAK3F7_Es5lZI5dlPu9z4fOlDdz-IOuuPiBb05opMv5IeYl7p9-efROQVK4zcMVlUt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Motion of ions in an electron cyclotron resonance plasma</title><source>AIP Digital Archive</source><creator>KÖHLER, W. E ; RÖMHELD, M ; SEEBÖCK, R. J ; SKABERNA, S</creator><creatorcontrib>KÖHLER, W. E ; RÖMHELD, M ; SEEBÖCK, R. J ; SKABERNA, S</creatorcontrib><description>The motion of ions emerging from an electron-cyclotron-resonance plasma source has been investigated. Trajectories have been calculated by solving the ion equations of motion in a divergent magnetic field and an electrostatic longitudinal accelerating field which has to be evaluated self-consistently. The trajectory calculations have been combined with a Monte Carlo procedure for choosing the initial ion phase space variables in order to study the propagation of the ion distribution function. It is shown that outside the chamber the spatial profile of this distribution is increasingly broadened with distance from the second magnet due to the diverging magnetic field lines, while at the same time the ions gain energy from the electrostatic field. For an argon plasma a mean ion beam energy of about 16 eV with respect to the plasma source potential results at the target plane in a distance of 60 cm from the source.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.110316</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Elementary processes in plasma ; Exact sciences and technology ; Particle orbits ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma production and heating ; Plasma sources</subject><ispartof>Applied physics letters, 1993-11, Vol.63 (21), p.2890-2892</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c254t-feb89901c728fdc3bbc3ef5501b6e76b26e3cf2368ee73aebb175d2c1c6be7bb3</citedby><cites>FETCH-LOGICAL-c254t-feb89901c728fdc3bbc3ef5501b6e76b26e3cf2368ee73aebb175d2c1c6be7bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3880102$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KÖHLER, W. E</creatorcontrib><creatorcontrib>RÖMHELD, M</creatorcontrib><creatorcontrib>SEEBÖCK, R. J</creatorcontrib><creatorcontrib>SKABERNA, S</creatorcontrib><title>Motion of ions in an electron cyclotron resonance plasma</title><title>Applied physics letters</title><description>The motion of ions emerging from an electron-cyclotron-resonance plasma source has been investigated. Trajectories have been calculated by solving the ion equations of motion in a divergent magnetic field and an electrostatic longitudinal accelerating field which has to be evaluated self-consistently. The trajectory calculations have been combined with a Monte Carlo procedure for choosing the initial ion phase space variables in order to study the propagation of the ion distribution function. It is shown that outside the chamber the spatial profile of this distribution is increasingly broadened with distance from the second magnet due to the diverging magnetic field lines, while at the same time the ions gain energy from the electrostatic field. For an argon plasma a mean ion beam energy of about 16 eV with respect to the plasma source potential results at the target plane in a distance of 60 cm from the source.</description><subject>Elementary processes in plasma</subject><subject>Exact sciences and technology</subject><subject>Particle orbits</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma production and heating</subject><subject>Plasma sources</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNo9j09LxDAQxYMoWFfBj5CDBy9dMxmbpEdZ_AcrXvRcktkJVLpNSXrZb291xdOb9_gxvCfENag1KIN3sAZQCOZEVKCsrRHAnYpKKYW1aRs4FxelfC220YiVcG9p7tMoU5SLFNmP0o-SB6Y5LzEdaEi_V-aSRj8Sy2nwZe8vxVn0Q-GrP12Jz6fHj81LvX1_ft08bGvSzf1cRw6ubRWQ1S7uCEMg5Ng0CoJha4I2jBQ1Gsds0XMIYJudJiAT2IaAK3F7_Es5lZI5dlPu9z4fOlDdz-IOuuPiBb05opMv5IeYl7p9-efROQVK4zcMVlUt</recordid><startdate>19931122</startdate><enddate>19931122</enddate><creator>KÖHLER, W. E</creator><creator>RÖMHELD, M</creator><creator>SEEBÖCK, R. J</creator><creator>SKABERNA, S</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19931122</creationdate><title>Motion of ions in an electron cyclotron resonance plasma</title><author>KÖHLER, W. E ; RÖMHELD, M ; SEEBÖCK, R. J ; SKABERNA, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-feb89901c728fdc3bbc3ef5501b6e76b26e3cf2368ee73aebb175d2c1c6be7bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Elementary processes in plasma</topic><topic>Exact sciences and technology</topic><topic>Particle orbits</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma production and heating</topic><topic>Plasma sources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KÖHLER, W. E</creatorcontrib><creatorcontrib>RÖMHELD, M</creatorcontrib><creatorcontrib>SEEBÖCK, R. J</creatorcontrib><creatorcontrib>SKABERNA, S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KÖHLER, W. E</au><au>RÖMHELD, M</au><au>SEEBÖCK, R. J</au><au>SKABERNA, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion of ions in an electron cyclotron resonance plasma</atitle><jtitle>Applied physics letters</jtitle><date>1993-11-22</date><risdate>1993</risdate><volume>63</volume><issue>21</issue><spage>2890</spage><epage>2892</epage><pages>2890-2892</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The motion of ions emerging from an electron-cyclotron-resonance plasma source has been investigated. Trajectories have been calculated by solving the ion equations of motion in a divergent magnetic field and an electrostatic longitudinal accelerating field which has to be evaluated self-consistently. The trajectory calculations have been combined with a Monte Carlo procedure for choosing the initial ion phase space variables in order to study the propagation of the ion distribution function. It is shown that outside the chamber the spatial profile of this distribution is increasingly broadened with distance from the second magnet due to the diverging magnetic field lines, while at the same time the ions gain energy from the electrostatic field. For an argon plasma a mean ion beam energy of about 16 eV with respect to the plasma source potential results at the target plane in a distance of 60 cm from the source.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.110316</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 1993-11, Vol.63 (21), p.2890-2892
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_110316
source AIP Digital Archive
subjects Elementary processes in plasma
Exact sciences and technology
Particle orbits
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma production and heating
Plasma sources
title Motion of ions in an electron cyclotron resonance plasma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20of%20ions%20in%20an%20electron%20cyclotron%20resonance%20plasma&rft.jtitle=Applied%20physics%20letters&rft.au=K%C3%96HLER,%20W.%20E&rft.date=1993-11-22&rft.volume=63&rft.issue=21&rft.spage=2890&rft.epage=2892&rft.pages=2890-2892&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.110316&rft_dat=%3Cpascalfrancis_cross%3E3880102%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true