Thermal quenching of the photoluminescence of InGaAs/GaAs and InGaAs/AlGaAs strained-layer quantum wells

Photoluminescence in InGaAs/GaAs strained-layer quantum wells is strongly quenched by temperatures above 10–100 K, depending on the well width. Analysis of this dependence shows that the quenching mechanism is thermal activation of electron-hole pairs from the wells into the GaAs barriers, followed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 1990-11, Vol.57 (19), p.1986-1988
Hauptverfasser: LAMBKIN, J. D, DUNSTAN, D. J, HOMEWOOD, K. P, HOWARD, L. K, EMENY, M. T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1988
container_issue 19
container_start_page 1986
container_title Applied physics letters
container_volume 57
creator LAMBKIN, J. D
DUNSTAN, D. J
HOMEWOOD, K. P
HOWARD, L. K
EMENY, M. T
description Photoluminescence in InGaAs/GaAs strained-layer quantum wells is strongly quenched by temperatures above 10–100 K, depending on the well width. Analysis of this dependence shows that the quenching mechanism is thermal activation of electron-hole pairs from the wells into the GaAs barriers, followed by nonradiative recombination through a loss mechanism in bulk GaAs. The addition of Al to the barriers to improve confinement eliminates loss through this route but introduces another loss mechanism, characterized by an activation energy independent of well width and with a smaller pre-exponential factor.
doi_str_mv 10.1063/1.103987
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_103987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19392547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-78072f2a895d0303e0aa34e169e39298836f3cd983c06f9773ba267e295d8c033</originalsourceid><addsrcrecordid>eNpFkFFLwzAUhYMoWKfgT-iL4Etdkrs2yeMYOgcDX-ZzuaaJraTpTDpk_97UKb7cy7nn41w4hNwy-sBoBXOWFigpzkjGqBAFMCbPSUYphaJSJbskVzF-JFlygIy0u9aEHl3-eTBet51_zwebj63J9-0wDu7Qd95EnTwzGRu_xmWcTyNH3_zppfu5xDFgwpvC4dGEFIl-PPT5l3EuXpMLiy6am989I69Pj7vVc7F9WW9Wy22hgbOxEJIKbjlKVTYUKBiKCAvDKmVAcSUlVBZ0oyRoWlklBLwhr4ThiZeaAszI_SlXhyHGYGy9D12P4VgzWk8N1aw-NZTQuxO6x6jR2YBed_GfV-ljuRDwDTtLZDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal quenching of the photoluminescence of InGaAs/GaAs and InGaAs/AlGaAs strained-layer quantum wells</title><source>AIP Digital Archive</source><creator>LAMBKIN, J. D ; DUNSTAN, D. J ; HOMEWOOD, K. P ; HOWARD, L. K ; EMENY, M. T</creator><creatorcontrib>LAMBKIN, J. D ; DUNSTAN, D. J ; HOMEWOOD, K. P ; HOWARD, L. K ; EMENY, M. T</creatorcontrib><description>Photoluminescence in InGaAs/GaAs strained-layer quantum wells is strongly quenched by temperatures above 10–100 K, depending on the well width. Analysis of this dependence shows that the quenching mechanism is thermal activation of electron-hole pairs from the wells into the GaAs barriers, followed by nonradiative recombination through a loss mechanism in bulk GaAs. The addition of Al to the barriers to improve confinement eliminates loss through this route but introduces another loss mechanism, characterized by an activation energy independent of well width and with a smaller pre-exponential factor.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.103987</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of specific thin films ; Physics</subject><ispartof>Applied physics letters, 1990-11, Vol.57 (19), p.1986-1988</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-78072f2a895d0303e0aa34e169e39298836f3cd983c06f9773ba267e295d8c033</citedby><cites>FETCH-LOGICAL-c321t-78072f2a895d0303e0aa34e169e39298836f3cd983c06f9773ba267e295d8c033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19392547$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LAMBKIN, J. D</creatorcontrib><creatorcontrib>DUNSTAN, D. J</creatorcontrib><creatorcontrib>HOMEWOOD, K. P</creatorcontrib><creatorcontrib>HOWARD, L. K</creatorcontrib><creatorcontrib>EMENY, M. T</creatorcontrib><title>Thermal quenching of the photoluminescence of InGaAs/GaAs and InGaAs/AlGaAs strained-layer quantum wells</title><title>Applied physics letters</title><description>Photoluminescence in InGaAs/GaAs strained-layer quantum wells is strongly quenched by temperatures above 10–100 K, depending on the well width. Analysis of this dependence shows that the quenching mechanism is thermal activation of electron-hole pairs from the wells into the GaAs barriers, followed by nonradiative recombination through a loss mechanism in bulk GaAs. The addition of Al to the barriers to improve confinement eliminates loss through this route but introduces another loss mechanism, characterized by an activation energy independent of well width and with a smaller pre-exponential factor.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of specific thin films</subject><subject>Physics</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNpFkFFLwzAUhYMoWKfgT-iL4Etdkrs2yeMYOgcDX-ZzuaaJraTpTDpk_97UKb7cy7nn41w4hNwy-sBoBXOWFigpzkjGqBAFMCbPSUYphaJSJbskVzF-JFlygIy0u9aEHl3-eTBet51_zwebj63J9-0wDu7Qd95EnTwzGRu_xmWcTyNH3_zppfu5xDFgwpvC4dGEFIl-PPT5l3EuXpMLiy6am989I69Pj7vVc7F9WW9Wy22hgbOxEJIKbjlKVTYUKBiKCAvDKmVAcSUlVBZ0oyRoWlklBLwhr4ThiZeaAszI_SlXhyHGYGy9D12P4VgzWk8N1aw-NZTQuxO6x6jR2YBed_GfV-ljuRDwDTtLZDg</recordid><startdate>19901105</startdate><enddate>19901105</enddate><creator>LAMBKIN, J. D</creator><creator>DUNSTAN, D. J</creator><creator>HOMEWOOD, K. P</creator><creator>HOWARD, L. K</creator><creator>EMENY, M. T</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19901105</creationdate><title>Thermal quenching of the photoluminescence of InGaAs/GaAs and InGaAs/AlGaAs strained-layer quantum wells</title><author>LAMBKIN, J. D ; DUNSTAN, D. J ; HOMEWOOD, K. P ; HOWARD, L. K ; EMENY, M. T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-78072f2a895d0303e0aa34e169e39298836f3cd983c06f9773ba267e295d8c033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of specific thin films</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LAMBKIN, J. D</creatorcontrib><creatorcontrib>DUNSTAN, D. J</creatorcontrib><creatorcontrib>HOMEWOOD, K. P</creatorcontrib><creatorcontrib>HOWARD, L. K</creatorcontrib><creatorcontrib>EMENY, M. T</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LAMBKIN, J. D</au><au>DUNSTAN, D. J</au><au>HOMEWOOD, K. P</au><au>HOWARD, L. K</au><au>EMENY, M. T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal quenching of the photoluminescence of InGaAs/GaAs and InGaAs/AlGaAs strained-layer quantum wells</atitle><jtitle>Applied physics letters</jtitle><date>1990-11-05</date><risdate>1990</risdate><volume>57</volume><issue>19</issue><spage>1986</spage><epage>1988</epage><pages>1986-1988</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Photoluminescence in InGaAs/GaAs strained-layer quantum wells is strongly quenched by temperatures above 10–100 K, depending on the well width. Analysis of this dependence shows that the quenching mechanism is thermal activation of electron-hole pairs from the wells into the GaAs barriers, followed by nonradiative recombination through a loss mechanism in bulk GaAs. The addition of Al to the barriers to improve confinement eliminates loss through this route but introduces another loss mechanism, characterized by an activation energy independent of well width and with a smaller pre-exponential factor.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.103987</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 1990-11, Vol.57 (19), p.1986-1988
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_103987
source AIP Digital Archive
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Exact sciences and technology
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of specific thin films
Physics
title Thermal quenching of the photoluminescence of InGaAs/GaAs and InGaAs/AlGaAs strained-layer quantum wells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20quenching%20of%20the%20photoluminescence%20of%20InGaAs/GaAs%20and%20InGaAs/AlGaAs%20strained-layer%20quantum%20wells&rft.jtitle=Applied%20physics%20letters&rft.au=LAMBKIN,%20J.%20D&rft.date=1990-11-05&rft.volume=57&rft.issue=19&rft.spage=1986&rft.epage=1988&rft.pages=1986-1988&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.103987&rft_dat=%3Cpascalfrancis_cross%3E19392547%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true