Radiation-induced phenomena in thermally treated Kr matrices
The effect of thermal treatment on relaxation phenomena in Kr matrices irradiated with a low-energy electron beam has been studied. The experiments were carried out using measurements of the relaxation emissions of preirradiated Kr samples, which were unannealed and annealed before exposure to an el...
Gespeichert in:
Veröffentlicht in: | Low temperature physics (Woodbury, N.Y.) N.Y.), 2023-05, Vol.49 (5), p.574-582 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 582 |
---|---|
container_issue | 5 |
container_start_page | 574 |
container_title | Low temperature physics (Woodbury, N.Y.) |
container_volume | 49 |
creator | Savchenko, E. Khyzhniy, I. Uyutnov, S. Bludov, M. Bondybey, V. |
description | The effect of thermal treatment on relaxation phenomena in Kr matrices irradiated with a low-energy electron beam has been studied. The experiments were carried out using measurements of the relaxation emissions of preirradiated Kr samples, which were unannealed and annealed before exposure to an electron beam. Three types of emissions were monitored in a correlated real-time manner: thermally stimulated luminescence, thermally stimulated exoelectron emission, and total yield of particles via pressure measurements. The energy levels of defects were estimated from the thermally stimulated luminescence data of the annealed sample. Two types of electron-hole traps created by electronic excitation were identified: close pairs and distant ones. Additional confirmation of the “excited state” mechanism of defect formation was obtained. Analysis of the correlation of yields and the effect of thermal treatment gave additional arguments in support of the crowdion model of anomalous low-temperature post-desorption from pre-irradiated Kr matrices. |
doi_str_mv | 10.1063/10.0017819 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_10_0017819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2814587712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-974f5e79b439465fbeac8ca4275351bf8f336d6dcc69a8a3cf8c34962129f62e3</originalsourceid><addsrcrecordid>eNp90EtLxDAQB_AgCq6rFz9BwZtSzaPNA7zI4gsXBFHwFtI0YbP0ZZIK--1N3UU8iKf_wPyYYQaAUwQvEaTkKiWEiHEk9sAMQQFzWiK2P9WU5Iyx90NwFMI6odQVM3D9omqnouu73HX1qE2dDSvT9a3pVOa6LK6Mb1XTbLLojYqp_eSzVkXvtAnH4MCqJpiTXc7B293t6-IhXz7fPy5ulrkmFMZcsMKWhomqIKKgpa2M0lyrArOSlKiy3BJCa1prTYXiimjLNSkExQgLS7Ehc3C2nTv4_mM0Icp1P_ourZSYo6LkjCGc1PlWad-H4I2Vg3et8huJoJzun3L3nYQvtjhoF7_v_9Gfvf8l5VDb__Qfs78AvAxyqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814587712</pqid></control><display><type>article</type><title>Radiation-induced phenomena in thermally treated Kr matrices</title><source>AIP Journals Complete</source><creator>Savchenko, E. ; Khyzhniy, I. ; Uyutnov, S. ; Bludov, M. ; Bondybey, V.</creator><creatorcontrib>Savchenko, E. ; Khyzhniy, I. ; Uyutnov, S. ; Bludov, M. ; Bondybey, V.</creatorcontrib><description>The effect of thermal treatment on relaxation phenomena in Kr matrices irradiated with a low-energy electron beam has been studied. The experiments were carried out using measurements of the relaxation emissions of preirradiated Kr samples, which were unannealed and annealed before exposure to an electron beam. Three types of emissions were monitored in a correlated real-time manner: thermally stimulated luminescence, thermally stimulated exoelectron emission, and total yield of particles via pressure measurements. The energy levels of defects were estimated from the thermally stimulated luminescence data of the annealed sample. Two types of electron-hole traps created by electronic excitation were identified: close pairs and distant ones. Additional confirmation of the “excited state” mechanism of defect formation was obtained. Analysis of the correlation of yields and the effect of thermal treatment gave additional arguments in support of the crowdion model of anomalous low-temperature post-desorption from pre-irradiated Kr matrices.</description><identifier>ISSN: 1063-777X</identifier><identifier>EISSN: 1090-6517</identifier><identifier>DOI: 10.1063/10.0017819</identifier><identifier>CODEN: LTPHEG</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Defect annealing ; Electron beams ; Energy levels ; Exoelectron emission ; Heat treatment ; Hole traps ; Holes (electron deficiencies) ; Low temperature ; Luminescence ; Pollution monitoring ; Radiation effects</subject><ispartof>Low temperature physics (Woodbury, N.Y.), 2023-05, Vol.49 (5), p.574-582</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-974f5e79b439465fbeac8ca4275351bf8f336d6dcc69a8a3cf8c34962129f62e3</cites><orcidid>0000-0002-1534-8769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/ltp/article-lookup/doi/10.1063/10.0017819$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27922,27923,76154</link.rule.ids></links><search><creatorcontrib>Savchenko, E.</creatorcontrib><creatorcontrib>Khyzhniy, I.</creatorcontrib><creatorcontrib>Uyutnov, S.</creatorcontrib><creatorcontrib>Bludov, M.</creatorcontrib><creatorcontrib>Bondybey, V.</creatorcontrib><title>Radiation-induced phenomena in thermally treated Kr matrices</title><title>Low temperature physics (Woodbury, N.Y.)</title><description>The effect of thermal treatment on relaxation phenomena in Kr matrices irradiated with a low-energy electron beam has been studied. The experiments were carried out using measurements of the relaxation emissions of preirradiated Kr samples, which were unannealed and annealed before exposure to an electron beam. Three types of emissions were monitored in a correlated real-time manner: thermally stimulated luminescence, thermally stimulated exoelectron emission, and total yield of particles via pressure measurements. The energy levels of defects were estimated from the thermally stimulated luminescence data of the annealed sample. Two types of electron-hole traps created by electronic excitation were identified: close pairs and distant ones. Additional confirmation of the “excited state” mechanism of defect formation was obtained. Analysis of the correlation of yields and the effect of thermal treatment gave additional arguments in support of the crowdion model of anomalous low-temperature post-desorption from pre-irradiated Kr matrices.</description><subject>Defect annealing</subject><subject>Electron beams</subject><subject>Energy levels</subject><subject>Exoelectron emission</subject><subject>Heat treatment</subject><subject>Hole traps</subject><subject>Holes (electron deficiencies)</subject><subject>Low temperature</subject><subject>Luminescence</subject><subject>Pollution monitoring</subject><subject>Radiation effects</subject><issn>1063-777X</issn><issn>1090-6517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90EtLxDAQB_AgCq6rFz9BwZtSzaPNA7zI4gsXBFHwFtI0YbP0ZZIK--1N3UU8iKf_wPyYYQaAUwQvEaTkKiWEiHEk9sAMQQFzWiK2P9WU5Iyx90NwFMI6odQVM3D9omqnouu73HX1qE2dDSvT9a3pVOa6LK6Mb1XTbLLojYqp_eSzVkXvtAnH4MCqJpiTXc7B293t6-IhXz7fPy5ulrkmFMZcsMKWhomqIKKgpa2M0lyrArOSlKiy3BJCa1prTYXiimjLNSkExQgLS7Ehc3C2nTv4_mM0Icp1P_ourZSYo6LkjCGc1PlWad-H4I2Vg3et8huJoJzun3L3nYQvtjhoF7_v_9Gfvf8l5VDb__Qfs78AvAxyqA</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Savchenko, E.</creator><creator>Khyzhniy, I.</creator><creator>Uyutnov, S.</creator><creator>Bludov, M.</creator><creator>Bondybey, V.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1534-8769</orcidid></search><sort><creationdate>20230501</creationdate><title>Radiation-induced phenomena in thermally treated Kr matrices</title><author>Savchenko, E. ; Khyzhniy, I. ; Uyutnov, S. ; Bludov, M. ; Bondybey, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-974f5e79b439465fbeac8ca4275351bf8f336d6dcc69a8a3cf8c34962129f62e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Defect annealing</topic><topic>Electron beams</topic><topic>Energy levels</topic><topic>Exoelectron emission</topic><topic>Heat treatment</topic><topic>Hole traps</topic><topic>Holes (electron deficiencies)</topic><topic>Low temperature</topic><topic>Luminescence</topic><topic>Pollution monitoring</topic><topic>Radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savchenko, E.</creatorcontrib><creatorcontrib>Khyzhniy, I.</creatorcontrib><creatorcontrib>Uyutnov, S.</creatorcontrib><creatorcontrib>Bludov, M.</creatorcontrib><creatorcontrib>Bondybey, V.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Low temperature physics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Savchenko, E.</au><au>Khyzhniy, I.</au><au>Uyutnov, S.</au><au>Bludov, M.</au><au>Bondybey, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation-induced phenomena in thermally treated Kr matrices</atitle><jtitle>Low temperature physics (Woodbury, N.Y.)</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>49</volume><issue>5</issue><spage>574</spage><epage>582</epage><pages>574-582</pages><issn>1063-777X</issn><eissn>1090-6517</eissn><coden>LTPHEG</coden><abstract>The effect of thermal treatment on relaxation phenomena in Kr matrices irradiated with a low-energy electron beam has been studied. The experiments were carried out using measurements of the relaxation emissions of preirradiated Kr samples, which were unannealed and annealed before exposure to an electron beam. Three types of emissions were monitored in a correlated real-time manner: thermally stimulated luminescence, thermally stimulated exoelectron emission, and total yield of particles via pressure measurements. The energy levels of defects were estimated from the thermally stimulated luminescence data of the annealed sample. Two types of electron-hole traps created by electronic excitation were identified: close pairs and distant ones. Additional confirmation of the “excited state” mechanism of defect formation was obtained. Analysis of the correlation of yields and the effect of thermal treatment gave additional arguments in support of the crowdion model of anomalous low-temperature post-desorption from pre-irradiated Kr matrices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/10.0017819</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1534-8769</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-777X |
ispartof | Low temperature physics (Woodbury, N.Y.), 2023-05, Vol.49 (5), p.574-582 |
issn | 1063-777X 1090-6517 |
language | eng |
recordid | cdi_crossref_primary_10_1063_10_0017819 |
source | AIP Journals Complete |
subjects | Defect annealing Electron beams Energy levels Exoelectron emission Heat treatment Hole traps Holes (electron deficiencies) Low temperature Luminescence Pollution monitoring Radiation effects |
title | Radiation-induced phenomena in thermally treated Kr matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation-induced%20phenomena%20in%20thermally%20treated%20Kr%20matrices&rft.jtitle=Low%20temperature%20physics%20(Woodbury,%20N.Y.)&rft.au=Savchenko,%20E.&rft.date=2023-05-01&rft.volume=49&rft.issue=5&rft.spage=574&rft.epage=582&rft.pages=574-582&rft.issn=1063-777X&rft.eissn=1090-6517&rft.coden=LTPHEG&rft_id=info:doi/10.1063/10.0017819&rft_dat=%3Cproquest_cross%3E2814587712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814587712&rft_id=info:pmid/&rfr_iscdi=true |