Probabilistic Assessment of Debris Flow Peak Discharge by Monte Carlo Simulation

AbstractThe topographic and hydrologic parameters involved in the estimation of the debris flow peak discharge in a classical approach are usually assumed to be deterministic. As a result, in such approaches, the only uncertainty in the evaluation of peak discharge is the evaluation of rainfall inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering Civil Engineering, 2017-03, Vol.3 (1)
Hauptverfasser: De Paola, F, De Risi, R, Di Crescenzo, G, Giugni, M, Santo, A, Speranza, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering
container_volume 3
creator De Paola, F
De Risi, R
Di Crescenzo, G
Giugni, M
Santo, A
Speranza, G
description AbstractThe topographic and hydrologic parameters involved in the estimation of the debris flow peak discharge in a classical approach are usually assumed to be deterministic. As a result, in such approaches, the only uncertainty in the evaluation of peak discharge is the evaluation of rainfall intensity and frequency. The present study aims to provide a probabilistic approach for estimating the debris flow peak discharge through the use of a Monte Carlo simulation method. Studies on such landslides in pyroclastic deposits have been performed in order to identify potential source areas and the main depositional mechanisms. The standard Monte Carlo simulation is used in order to propagate the uncertainties in different paramaters, related to hydrographic basin modeling, and to obtain a probability distribution for the peak discharge, related to a given return period. As a numerical example, the peak discharge of debris flow in the basin of the Corbara Stream, located in the municipality of Salerno in southern Italy, is evaluated.
doi_str_mv 10.1061/AJRUA6.0000855
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1061_AJRUA6_0000855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>443238</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-8b6a43e63f5f203b3bf3b5b2977d9b9b8309760084103660842bc88225fd021c3</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJgqb168ZK7bM3HJrs5LlvrBxWL2nNItomm7m4k2SL990ZaoRffZR7Mm-HNAHCJ0RQjjm-qx5dVxacoTcnYCRgRWvCs4Dk5PdrPwSTGTbrBuSCUiRFYLoPXSrvWxcE1sIrRxNiZfoDewpnRwUU4b_03XBr1CWcuNh8qvBuod_DJ94OBtQqth6-u27ZqcL6_AGdWtdFMDjgGq_ntW32fLZ7vHupqkSki2JCVmqucGk4tswRRTbWlmmkiimIttNAlRaLgKUyOEeU8IdFNWRLC7BoR3NAxmO59m-BjDMbKr-A6FXYSI_lbidxXIg-VJMHVXqBSPrnx29Cn_2SeU0LLxF7_sc0R-4_XDyFnaOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probabilistic Assessment of Debris Flow Peak Discharge by Monte Carlo Simulation</title><source>ASCE All titles</source><creator>De Paola, F ; De Risi, R ; Di Crescenzo, G ; Giugni, M ; Santo, A ; Speranza, G</creator><creatorcontrib>De Paola, F ; De Risi, R ; Di Crescenzo, G ; Giugni, M ; Santo, A ; Speranza, G</creatorcontrib><description>AbstractThe topographic and hydrologic parameters involved in the estimation of the debris flow peak discharge in a classical approach are usually assumed to be deterministic. As a result, in such approaches, the only uncertainty in the evaluation of peak discharge is the evaluation of rainfall intensity and frequency. The present study aims to provide a probabilistic approach for estimating the debris flow peak discharge through the use of a Monte Carlo simulation method. Studies on such landslides in pyroclastic deposits have been performed in order to identify potential source areas and the main depositional mechanisms. The standard Monte Carlo simulation is used in order to propagate the uncertainties in different paramaters, related to hydrographic basin modeling, and to obtain a probability distribution for the peak discharge, related to a given return period. As a numerical example, the peak discharge of debris flow in the basin of the Corbara Stream, located in the municipality of Salerno in southern Italy, is evaluated.</description><identifier>ISSN: 2376-7642</identifier><identifier>EISSN: 2376-7642</identifier><identifier>DOI: 10.1061/AJRUA6.0000855</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>Technical Papers</subject><ispartof>ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering, 2017-03, Vol.3 (1)</ispartof><rights>2015 American Society of Civil Engineers</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-8b6a43e63f5f203b3bf3b5b2977d9b9b8309760084103660842bc88225fd021c3</citedby><cites>FETCH-LOGICAL-a295t-8b6a43e63f5f203b3bf3b5b2977d9b9b8309760084103660842bc88225fd021c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/AJRUA6.0000855$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/AJRUA6.0000855$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,75941,75949</link.rule.ids></links><search><creatorcontrib>De Paola, F</creatorcontrib><creatorcontrib>De Risi, R</creatorcontrib><creatorcontrib>Di Crescenzo, G</creatorcontrib><creatorcontrib>Giugni, M</creatorcontrib><creatorcontrib>Santo, A</creatorcontrib><creatorcontrib>Speranza, G</creatorcontrib><title>Probabilistic Assessment of Debris Flow Peak Discharge by Monte Carlo Simulation</title><title>ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering</title><addtitle>ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering</addtitle><description>AbstractThe topographic and hydrologic parameters involved in the estimation of the debris flow peak discharge in a classical approach are usually assumed to be deterministic. As a result, in such approaches, the only uncertainty in the evaluation of peak discharge is the evaluation of rainfall intensity and frequency. The present study aims to provide a probabilistic approach for estimating the debris flow peak discharge through the use of a Monte Carlo simulation method. Studies on such landslides in pyroclastic deposits have been performed in order to identify potential source areas and the main depositional mechanisms. The standard Monte Carlo simulation is used in order to propagate the uncertainties in different paramaters, related to hydrographic basin modeling, and to obtain a probability distribution for the peak discharge, related to a given return period. As a numerical example, the peak discharge of debris flow in the basin of the Corbara Stream, located in the municipality of Salerno in southern Italy, is evaluated.</description><subject>Technical Papers</subject><issn>2376-7642</issn><issn>2376-7642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEUDKJgqb168ZK7bM3HJrs5LlvrBxWL2nNItomm7m4k2SL990ZaoRffZR7Mm-HNAHCJ0RQjjm-qx5dVxacoTcnYCRgRWvCs4Dk5PdrPwSTGTbrBuSCUiRFYLoPXSrvWxcE1sIrRxNiZfoDewpnRwUU4b_03XBr1CWcuNh8qvBuod_DJ94OBtQqth6-u27ZqcL6_AGdWtdFMDjgGq_ntW32fLZ7vHupqkSki2JCVmqucGk4tswRRTbWlmmkiimIttNAlRaLgKUyOEeU8IdFNWRLC7BoR3NAxmO59m-BjDMbKr-A6FXYSI_lbidxXIg-VJMHVXqBSPrnx29Cn_2SeU0LLxF7_sc0R-4_XDyFnaOE</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>De Paola, F</creator><creator>De Risi, R</creator><creator>Di Crescenzo, G</creator><creator>Giugni, M</creator><creator>Santo, A</creator><creator>Speranza, G</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Probabilistic Assessment of Debris Flow Peak Discharge by Monte Carlo Simulation</title><author>De Paola, F ; De Risi, R ; Di Crescenzo, G ; Giugni, M ; Santo, A ; Speranza, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-8b6a43e63f5f203b3bf3b5b2977d9b9b8309760084103660842bc88225fd021c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Technical Papers</topic><toplevel>online_resources</toplevel><creatorcontrib>De Paola, F</creatorcontrib><creatorcontrib>De Risi, R</creatorcontrib><creatorcontrib>Di Crescenzo, G</creatorcontrib><creatorcontrib>Giugni, M</creatorcontrib><creatorcontrib>Santo, A</creatorcontrib><creatorcontrib>Speranza, G</creatorcontrib><collection>CrossRef</collection><jtitle>ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Paola, F</au><au>De Risi, R</au><au>Di Crescenzo, G</au><au>Giugni, M</au><au>Santo, A</au><au>Speranza, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Assessment of Debris Flow Peak Discharge by Monte Carlo Simulation</atitle><jtitle>ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering</jtitle><stitle>ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>3</volume><issue>1</issue><issn>2376-7642</issn><eissn>2376-7642</eissn><abstract>AbstractThe topographic and hydrologic parameters involved in the estimation of the debris flow peak discharge in a classical approach are usually assumed to be deterministic. As a result, in such approaches, the only uncertainty in the evaluation of peak discharge is the evaluation of rainfall intensity and frequency. The present study aims to provide a probabilistic approach for estimating the debris flow peak discharge through the use of a Monte Carlo simulation method. Studies on such landslides in pyroclastic deposits have been performed in order to identify potential source areas and the main depositional mechanisms. The standard Monte Carlo simulation is used in order to propagate the uncertainties in different paramaters, related to hydrographic basin modeling, and to obtain a probability distribution for the peak discharge, related to a given return period. As a numerical example, the peak discharge of debris flow in the basin of the Corbara Stream, located in the municipality of Salerno in southern Italy, is evaluated.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/AJRUA6.0000855</doi></addata></record>
fulltext fulltext
identifier ISSN: 2376-7642
ispartof ASCE-ASME journal of risk and uncertainty in engineering systems. Part A, Civil Engineering, 2017-03, Vol.3 (1)
issn 2376-7642
2376-7642
language eng
recordid cdi_crossref_primary_10_1061_AJRUA6_0000855
source ASCE All titles
subjects Technical Papers
title Probabilistic Assessment of Debris Flow Peak Discharge by Monte Carlo Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Assessment%20of%20Debris%20Flow%20Peak%20Discharge%20by%20Monte%20Carlo%20Simulation&rft.jtitle=ASCE-ASME%20journal%20of%20risk%20and%20uncertainty%20in%20engineering%20systems.%20Part%20A,%20Civil%20Engineering&rft.au=De%20Paola,%20F&rft.date=2017-03-01&rft.volume=3&rft.issue=1&rft.issn=2376-7642&rft.eissn=2376-7642&rft_id=info:doi/10.1061/AJRUA6.0000855&rft_dat=%3Casme_cross%3E443238%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true