Numerical simulation of pulsatile blood flow in the human left ventricle

Objective: On behalf of computational fluid dynamics intracardiac flow shall be simulated to identify flow patterns and resulting energy loss with respect to different ventricular geometries. Methods: After acquisition of individual MRI-data, time-related geometry of the left heart chambers is gener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schiller, W, Spiegel, K, Schmid, T, Rudorf, H, Flacke, S, Probst, C, Kovacz, A, Schenkel, T, Welz, A, Oertel, H, Liepsch, D
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue S 1
container_start_page
container_title
container_volume 55
creator Schiller, W
Spiegel, K
Schmid, T
Rudorf, H
Flacke, S
Probst, C
Kovacz, A
Schenkel, T
Welz, A
Oertel, H
Liepsch, D
description Objective: On behalf of computational fluid dynamics intracardiac flow shall be simulated to identify flow patterns and resulting energy loss with respect to different ventricular geometries. Methods: After acquisition of individual MRI-data, time-related geometry of the left heart chambers is generated by segmentation, post-processing and modelling. The coupling to a simplified model of planar heart valves with spatially varying resistance and a preformed aorta completes the numeric flow model. Physiological boundary conditions such as pre- and afterload are given by a simplified circulation model. A validation experiment is performed using a silicone ventricle created on basis of the same MRI data. In the experimental setup flow patterns are described with laser doppler measurements. Methodical influences are revealed by comparing the numerical simulation with MRI-flow measurements. Results: The developed method of simulating intracardiac blood flow gives a new fundament to understand the impact of different ventricular geometries respectively pathomorphologies on intraventricular blood flow. It is for the first time possible to simulate the asymmetric redirection in the left atrium and ventricle as described on the basis of MRI flow measurements. Conclusion: In contrast to medical flow imaging numerical simulation enables us to perform intraventricular energy estimations. Future aspects comprise a therapy planning system enabling us to compare different therapeutic strategies influencing the ventricular geometry.
doi_str_mv 10.1055/s-2007-967594
format Conference Proceeding
fullrecord <record><control><sourceid>thieme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1055_s_2007_967594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1055_s_2007_967594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c754-c6b0aff0c59e7d4f88be852757be68d66243c0cb525b9c551b082baa06f09ba03</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKtL9_kBRl8y-VxKUSsU3XQfkjShUzKTMplR_PdOqVtXjwvnXh4HoXsKjxSEeKqEAShipBKGX6AF5Y0h1AC7RAugihLJmbhGN7UeACjX2izQ-mPq4tAGl3Ftuym7sS09Lgkfp1znkCP2uZQdTrl847bH4z7i_dS5HueYRvwV-3Gu53iLrpLLNd793SXavr5sV2uy-Xx7Xz1vSFCCkyA9uJQgCBPVjietfdSCKaF8lHonJeNNgOAFE94EIagHzbxzIBMY76BZInKeDUOpdYjJHoe2c8OPpWBPFmy1Jwv2bGHmH878uG9jF-2hTEM___cP_gtplF5J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Numerical simulation of pulsatile blood flow in the human left ventricle</title><source>Thieme Connect Journals</source><creator>Schiller, W ; Spiegel, K ; Schmid, T ; Rudorf, H ; Flacke, S ; Probst, C ; Kovacz, A ; Schenkel, T ; Welz, A ; Oertel, H ; Liepsch, D</creator><creatorcontrib>Schiller, W ; Spiegel, K ; Schmid, T ; Rudorf, H ; Flacke, S ; Probst, C ; Kovacz, A ; Schenkel, T ; Welz, A ; Oertel, H ; Liepsch, D</creatorcontrib><description>Objective: On behalf of computational fluid dynamics intracardiac flow shall be simulated to identify flow patterns and resulting energy loss with respect to different ventricular geometries. Methods: After acquisition of individual MRI-data, time-related geometry of the left heart chambers is generated by segmentation, post-processing and modelling. The coupling to a simplified model of planar heart valves with spatially varying resistance and a preformed aorta completes the numeric flow model. Physiological boundary conditions such as pre- and afterload are given by a simplified circulation model. A validation experiment is performed using a silicone ventricle created on basis of the same MRI data. In the experimental setup flow patterns are described with laser doppler measurements. Methodical influences are revealed by comparing the numerical simulation with MRI-flow measurements. Results: The developed method of simulating intracardiac blood flow gives a new fundament to understand the impact of different ventricular geometries respectively pathomorphologies on intraventricular blood flow. It is for the first time possible to simulate the asymmetric redirection in the left atrium and ventricle as described on the basis of MRI flow measurements. Conclusion: In contrast to medical flow imaging numerical simulation enables us to perform intraventricular energy estimations. Future aspects comprise a therapy planning system enabling us to compare different therapeutic strategies influencing the ventricular geometry.</description><identifier>ISSN: 0171-6425</identifier><identifier>EISSN: 1439-1902</identifier><identifier>DOI: 10.1055/s-2007-967594</identifier><language>eng</language><ispartof>The Thoracic and cardiovascular surgeon, 2007, Vol.55 (S 1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,3004,3005,23909,23910,25118,27901,27902</link.rule.ids></links><search><creatorcontrib>Schiller, W</creatorcontrib><creatorcontrib>Spiegel, K</creatorcontrib><creatorcontrib>Schmid, T</creatorcontrib><creatorcontrib>Rudorf, H</creatorcontrib><creatorcontrib>Flacke, S</creatorcontrib><creatorcontrib>Probst, C</creatorcontrib><creatorcontrib>Kovacz, A</creatorcontrib><creatorcontrib>Schenkel, T</creatorcontrib><creatorcontrib>Welz, A</creatorcontrib><creatorcontrib>Oertel, H</creatorcontrib><creatorcontrib>Liepsch, D</creatorcontrib><title>Numerical simulation of pulsatile blood flow in the human left ventricle</title><title>The Thoracic and cardiovascular surgeon</title><addtitle>Thorac cardiovasc Surg</addtitle><description>Objective: On behalf of computational fluid dynamics intracardiac flow shall be simulated to identify flow patterns and resulting energy loss with respect to different ventricular geometries. Methods: After acquisition of individual MRI-data, time-related geometry of the left heart chambers is generated by segmentation, post-processing and modelling. The coupling to a simplified model of planar heart valves with spatially varying resistance and a preformed aorta completes the numeric flow model. Physiological boundary conditions such as pre- and afterload are given by a simplified circulation model. A validation experiment is performed using a silicone ventricle created on basis of the same MRI data. In the experimental setup flow patterns are described with laser doppler measurements. Methodical influences are revealed by comparing the numerical simulation with MRI-flow measurements. Results: The developed method of simulating intracardiac blood flow gives a new fundament to understand the impact of different ventricular geometries respectively pathomorphologies on intraventricular blood flow. It is for the first time possible to simulate the asymmetric redirection in the left atrium and ventricle as described on the basis of MRI flow measurements. Conclusion: In contrast to medical flow imaging numerical simulation enables us to perform intraventricular energy estimations. Future aspects comprise a therapy planning system enabling us to compare different therapeutic strategies influencing the ventricular geometry.</description><issn>0171-6425</issn><issn>1439-1902</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>0U6</sourceid><recordid>eNp1kE1LAzEURYMoWKtL9_kBRl8y-VxKUSsU3XQfkjShUzKTMplR_PdOqVtXjwvnXh4HoXsKjxSEeKqEAShipBKGX6AF5Y0h1AC7RAugihLJmbhGN7UeACjX2izQ-mPq4tAGl3Ftuym7sS09Lgkfp1znkCP2uZQdTrl847bH4z7i_dS5HueYRvwV-3Gu53iLrpLLNd793SXavr5sV2uy-Xx7Xz1vSFCCkyA9uJQgCBPVjietfdSCKaF8lHonJeNNgOAFE94EIagHzbxzIBMY76BZInKeDUOpdYjJHoe2c8OPpWBPFmy1Jwv2bGHmH878uG9jF-2hTEM___cP_gtplF5J</recordid><startdate>20070327</startdate><enddate>20070327</enddate><creator>Schiller, W</creator><creator>Spiegel, K</creator><creator>Schmid, T</creator><creator>Rudorf, H</creator><creator>Flacke, S</creator><creator>Probst, C</creator><creator>Kovacz, A</creator><creator>Schenkel, T</creator><creator>Welz, A</creator><creator>Oertel, H</creator><creator>Liepsch, D</creator><scope>0U6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070327</creationdate><title>Numerical simulation of pulsatile blood flow in the human left ventricle</title><author>Schiller, W ; Spiegel, K ; Schmid, T ; Rudorf, H ; Flacke, S ; Probst, C ; Kovacz, A ; Schenkel, T ; Welz, A ; Oertel, H ; Liepsch, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c754-c6b0aff0c59e7d4f88be852757be68d66243c0cb525b9c551b082baa06f09ba03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schiller, W</creatorcontrib><creatorcontrib>Spiegel, K</creatorcontrib><creatorcontrib>Schmid, T</creatorcontrib><creatorcontrib>Rudorf, H</creatorcontrib><creatorcontrib>Flacke, S</creatorcontrib><creatorcontrib>Probst, C</creatorcontrib><creatorcontrib>Kovacz, A</creatorcontrib><creatorcontrib>Schenkel, T</creatorcontrib><creatorcontrib>Welz, A</creatorcontrib><creatorcontrib>Oertel, H</creatorcontrib><creatorcontrib>Liepsch, D</creatorcontrib><collection>Thieme Connect Journals Open Access</collection><collection>CrossRef</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schiller, W</au><au>Spiegel, K</au><au>Schmid, T</au><au>Rudorf, H</au><au>Flacke, S</au><au>Probst, C</au><au>Kovacz, A</au><au>Schenkel, T</au><au>Welz, A</au><au>Oertel, H</au><au>Liepsch, D</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical simulation of pulsatile blood flow in the human left ventricle</atitle><btitle>The Thoracic and cardiovascular surgeon</btitle><addtitle>Thorac cardiovasc Surg</addtitle><date>2007-03-27</date><risdate>2007</risdate><volume>55</volume><issue>S 1</issue><issn>0171-6425</issn><eissn>1439-1902</eissn><abstract>Objective: On behalf of computational fluid dynamics intracardiac flow shall be simulated to identify flow patterns and resulting energy loss with respect to different ventricular geometries. Methods: After acquisition of individual MRI-data, time-related geometry of the left heart chambers is generated by segmentation, post-processing and modelling. The coupling to a simplified model of planar heart valves with spatially varying resistance and a preformed aorta completes the numeric flow model. Physiological boundary conditions such as pre- and afterload are given by a simplified circulation model. A validation experiment is performed using a silicone ventricle created on basis of the same MRI data. In the experimental setup flow patterns are described with laser doppler measurements. Methodical influences are revealed by comparing the numerical simulation with MRI-flow measurements. Results: The developed method of simulating intracardiac blood flow gives a new fundament to understand the impact of different ventricular geometries respectively pathomorphologies on intraventricular blood flow. It is for the first time possible to simulate the asymmetric redirection in the left atrium and ventricle as described on the basis of MRI flow measurements. Conclusion: In contrast to medical flow imaging numerical simulation enables us to perform intraventricular energy estimations. Future aspects comprise a therapy planning system enabling us to compare different therapeutic strategies influencing the ventricular geometry.</abstract><doi>10.1055/s-2007-967594</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0171-6425
ispartof The Thoracic and cardiovascular surgeon, 2007, Vol.55 (S 1)
issn 0171-6425
1439-1902
language eng
recordid cdi_crossref_primary_10_1055_s_2007_967594
source Thieme Connect Journals
title Numerical simulation of pulsatile blood flow in the human left ventricle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-thieme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20simulation%20of%20pulsatile%20blood%20flow%20in%20the%20human%20left%20ventricle&rft.btitle=The%20Thoracic%20and%20cardiovascular%20surgeon&rft.au=Schiller,%20W&rft.date=2007-03-27&rft.volume=55&rft.issue=S%201&rft.issn=0171-6425&rft.eissn=1439-1902&rft_id=info:doi/10.1055/s-2007-967594&rft_dat=%3Cthieme_cross%3E10_1055_s_2007_967594%3C/thieme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true