A Lambda Layer-Based Convolutional Sequence Embedding Model for Click-Through Rate Prediction

In the era of intelligent economy, the click-through rate (CTR) prediction system can evaluate massive service information based on user historical information, and screen out the products that are most likely to be favored by users, thus realizing customized push of information and achieve the ulti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wuhan University journal of natural sciences 2024-06, Vol.29 (3), p.198-208
Hauptverfasser: ZHOU, Liliang, YUAN, Shili, FENG, Zijian, DAI, Guilan, ZHOU, Guofu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue 3
container_start_page 198
container_title Wuhan University journal of natural sciences
container_volume 29
creator ZHOU, Liliang
YUAN, Shili
FENG, Zijian
DAI, Guilan
ZHOU, Guofu
description In the era of intelligent economy, the click-through rate (CTR) prediction system can evaluate massive service information based on user historical information, and screen out the products that are most likely to be favored by users, thus realizing customized push of information and achieve the ultimate goal of improving economic benefits. Sequence modeling is one of the main research directions of CTR prediction models based on deep learning. The user's general interest hidden in the entire click history and the short-term interest hidden in the recent click behaviors have different influences on the CTR prediction results, which are highly important. In terms of capturing the user's general interest, existing models paid more attention to the relationships between item embedding vectors (point-level), while ignoring the relationships between elements in item embedding vectors (union-level). The Lambda layer-based Convolutional Sequence Embedding (LCSE) model proposed in this paper uses the Lambda layer to capture features from click history through weight distribution, and uses horizontal and vertical filters on this basis to learn the user's general preferences from union-level and point-level. In addition, we also incorporate the user's short-term preferences captured by the embedding-based convolutional model to further improve the prediction results. The AUC (Area Under Curve) values of the LCSE model on the datasets Electronic, Movie & TV and MovieLens are 0.870 7, 0.903 6 and 0.946 7, improving 0.45%, 0.36% and 0.07% over the Caser model, proving the effectiveness of our proposed model.
doi_str_mv 10.1051/wujns/2024293198
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1051_wujns_2024293198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1051_wujns_2024293198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c838-69a7314f6462a88527196ba5ad329041cb0604f6331735d84e08903e489e30013</originalsourceid><addsrcrecordid>eNpFkMtOwzAURC0EEqWwZ-kfML2OncRelqg8pCAQZIsiJ75pU5IY7AbUvycFJFZnpNHM4hByyeGKQ8wXX-N2CIsIIhlpwbU6IjOutWBSa3U8ZYCU8ak-JWchbAGEjlM-I69Lmpu-smbCHj27NgEtzdzw6bpx17rBdPQFP0YcaqSrvkJr22FNH5zFjjbO06xr6zdWbLwb1xv6bHZInzzatj6Mz8lJY7qAF3-ck-JmVWR3LH-8vc-WOauVUCzRJhVcNolMIqNUHKVcJ5WJjRWRBsnrChKYaiF4KmKrJILSIFAqjQKAizmB39vauxA8NuW7b3vj9yWH8mCn_LFT_tsR34LOV7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Lambda Layer-Based Convolutional Sequence Embedding Model for Click-Through Rate Prediction</title><source>Alma/SFX Local Collection</source><creator>ZHOU, Liliang ; YUAN, Shili ; FENG, Zijian ; DAI, Guilan ; ZHOU, Guofu</creator><creatorcontrib>ZHOU, Liliang ; YUAN, Shili ; FENG, Zijian ; DAI, Guilan ; ZHOU, Guofu</creatorcontrib><description>In the era of intelligent economy, the click-through rate (CTR) prediction system can evaluate massive service information based on user historical information, and screen out the products that are most likely to be favored by users, thus realizing customized push of information and achieve the ultimate goal of improving economic benefits. Sequence modeling is one of the main research directions of CTR prediction models based on deep learning. The user's general interest hidden in the entire click history and the short-term interest hidden in the recent click behaviors have different influences on the CTR prediction results, which are highly important. In terms of capturing the user's general interest, existing models paid more attention to the relationships between item embedding vectors (point-level), while ignoring the relationships between elements in item embedding vectors (union-level). The Lambda layer-based Convolutional Sequence Embedding (LCSE) model proposed in this paper uses the Lambda layer to capture features from click history through weight distribution, and uses horizontal and vertical filters on this basis to learn the user's general preferences from union-level and point-level. In addition, we also incorporate the user's short-term preferences captured by the embedding-based convolutional model to further improve the prediction results. The AUC (Area Under Curve) values of the LCSE model on the datasets Electronic, Movie &amp; TV and MovieLens are 0.870 7, 0.903 6 and 0.946 7, improving 0.45%, 0.36% and 0.07% over the Caser model, proving the effectiveness of our proposed model.</description><identifier>ISSN: 1007-1202</identifier><identifier>EISSN: 1993-4998</identifier><identifier>DOI: 10.1051/wujns/2024293198</identifier><language>eng</language><ispartof>Wuhan University journal of natural sciences, 2024-06, Vol.29 (3), p.198-208</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c838-69a7314f6462a88527196ba5ad329041cb0604f6331735d84e08903e489e30013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>ZHOU, Liliang</creatorcontrib><creatorcontrib>YUAN, Shili</creatorcontrib><creatorcontrib>FENG, Zijian</creatorcontrib><creatorcontrib>DAI, Guilan</creatorcontrib><creatorcontrib>ZHOU, Guofu</creatorcontrib><title>A Lambda Layer-Based Convolutional Sequence Embedding Model for Click-Through Rate Prediction</title><title>Wuhan University journal of natural sciences</title><description>In the era of intelligent economy, the click-through rate (CTR) prediction system can evaluate massive service information based on user historical information, and screen out the products that are most likely to be favored by users, thus realizing customized push of information and achieve the ultimate goal of improving economic benefits. Sequence modeling is one of the main research directions of CTR prediction models based on deep learning. The user's general interest hidden in the entire click history and the short-term interest hidden in the recent click behaviors have different influences on the CTR prediction results, which are highly important. In terms of capturing the user's general interest, existing models paid more attention to the relationships between item embedding vectors (point-level), while ignoring the relationships between elements in item embedding vectors (union-level). The Lambda layer-based Convolutional Sequence Embedding (LCSE) model proposed in this paper uses the Lambda layer to capture features from click history through weight distribution, and uses horizontal and vertical filters on this basis to learn the user's general preferences from union-level and point-level. In addition, we also incorporate the user's short-term preferences captured by the embedding-based convolutional model to further improve the prediction results. The AUC (Area Under Curve) values of the LCSE model on the datasets Electronic, Movie &amp; TV and MovieLens are 0.870 7, 0.903 6 and 0.946 7, improving 0.45%, 0.36% and 0.07% over the Caser model, proving the effectiveness of our proposed model.</description><issn>1007-1202</issn><issn>1993-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAURC0EEqWwZ-kfML2OncRelqg8pCAQZIsiJ75pU5IY7AbUvycFJFZnpNHM4hByyeGKQ8wXX-N2CIsIIhlpwbU6IjOutWBSa3U8ZYCU8ak-JWchbAGEjlM-I69Lmpu-smbCHj27NgEtzdzw6bpx17rBdPQFP0YcaqSrvkJr22FNH5zFjjbO06xr6zdWbLwb1xv6bHZInzzatj6Mz8lJY7qAF3-ck-JmVWR3LH-8vc-WOauVUCzRJhVcNolMIqNUHKVcJ5WJjRWRBsnrChKYaiF4KmKrJILSIFAqjQKAizmB39vauxA8NuW7b3vj9yWH8mCn_LFT_tsR34LOV7s</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>ZHOU, Liliang</creator><creator>YUAN, Shili</creator><creator>FENG, Zijian</creator><creator>DAI, Guilan</creator><creator>ZHOU, Guofu</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202406</creationdate><title>A Lambda Layer-Based Convolutional Sequence Embedding Model for Click-Through Rate Prediction</title><author>ZHOU, Liliang ; YUAN, Shili ; FENG, Zijian ; DAI, Guilan ; ZHOU, Guofu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c838-69a7314f6462a88527196ba5ad329041cb0604f6331735d84e08903e489e30013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHOU, Liliang</creatorcontrib><creatorcontrib>YUAN, Shili</creatorcontrib><creatorcontrib>FENG, Zijian</creatorcontrib><creatorcontrib>DAI, Guilan</creatorcontrib><creatorcontrib>ZHOU, Guofu</creatorcontrib><collection>CrossRef</collection><jtitle>Wuhan University journal of natural sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHOU, Liliang</au><au>YUAN, Shili</au><au>FENG, Zijian</au><au>DAI, Guilan</au><au>ZHOU, Guofu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lambda Layer-Based Convolutional Sequence Embedding Model for Click-Through Rate Prediction</atitle><jtitle>Wuhan University journal of natural sciences</jtitle><date>2024-06</date><risdate>2024</risdate><volume>29</volume><issue>3</issue><spage>198</spage><epage>208</epage><pages>198-208</pages><issn>1007-1202</issn><eissn>1993-4998</eissn><abstract>In the era of intelligent economy, the click-through rate (CTR) prediction system can evaluate massive service information based on user historical information, and screen out the products that are most likely to be favored by users, thus realizing customized push of information and achieve the ultimate goal of improving economic benefits. Sequence modeling is one of the main research directions of CTR prediction models based on deep learning. The user's general interest hidden in the entire click history and the short-term interest hidden in the recent click behaviors have different influences on the CTR prediction results, which are highly important. In terms of capturing the user's general interest, existing models paid more attention to the relationships between item embedding vectors (point-level), while ignoring the relationships between elements in item embedding vectors (union-level). The Lambda layer-based Convolutional Sequence Embedding (LCSE) model proposed in this paper uses the Lambda layer to capture features from click history through weight distribution, and uses horizontal and vertical filters on this basis to learn the user's general preferences from union-level and point-level. In addition, we also incorporate the user's short-term preferences captured by the embedding-based convolutional model to further improve the prediction results. The AUC (Area Under Curve) values of the LCSE model on the datasets Electronic, Movie &amp; TV and MovieLens are 0.870 7, 0.903 6 and 0.946 7, improving 0.45%, 0.36% and 0.07% over the Caser model, proving the effectiveness of our proposed model.</abstract><doi>10.1051/wujns/2024293198</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1007-1202
ispartof Wuhan University journal of natural sciences, 2024-06, Vol.29 (3), p.198-208
issn 1007-1202
1993-4998
language eng
recordid cdi_crossref_primary_10_1051_wujns_2024293198
source Alma/SFX Local Collection
title A Lambda Layer-Based Convolutional Sequence Embedding Model for Click-Through Rate Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lambda%20Layer-Based%20Convolutional%20Sequence%20Embedding%20Model%20for%20Click-Through%20Rate%20Prediction&rft.jtitle=Wuhan%20University%20journal%20of%20natural%20sciences&rft.au=ZHOU,%20Liliang&rft.date=2024-06&rft.volume=29&rft.issue=3&rft.spage=198&rft.epage=208&rft.pages=198-208&rft.issn=1007-1202&rft.eissn=1993-4998&rft_id=info:doi/10.1051/wujns/2024293198&rft_dat=%3Ccrossref%3E10_1051_wujns_2024293198%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true