Image Semantic Segmentation Approach for Studying Human Behavior on Image Data

Image semantic segmentation is an essential technique for studying human behavior through image data. This paper proposes an image semantic segmentation method for human behavior research. Firstly, an end-to-end convolutional neural network architecture is proposed, which consists of a depth-separab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wuhan University journal of natural sciences 2024-04, Vol.29 (2), p.145-153
Hauptverfasser: ZHENG, Zhan, CHEN, Da, HUANG, Yanrong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue 2
container_start_page 145
container_title Wuhan University journal of natural sciences
container_volume 29
creator ZHENG, Zhan
CHEN, Da
HUANG, Yanrong
description Image semantic segmentation is an essential technique for studying human behavior through image data. This paper proposes an image semantic segmentation method for human behavior research. Firstly, an end-to-end convolutional neural network architecture is proposed, which consists of a depth-separable jump-connected fully convolutional network and a conditional random field network; then jump-connected convolution is used to classify each pixel in the image, and an image semantic segmentation method based on convolutional neural network is proposed; and then a conditional random field network is used to improve the effect of image segmentation of human behavior and a linear modeling and nonlinear modeling method based on the semantic segmentation of conditional random field image is proposed. Finally, using the proposed image segmentation network, the input entrepreneurial image data is semantically segmented to obtain the contour features of the person; and the segmentation of the images in the medical field. The experimental results show that the image semantic segmentation method is effective. It is a new way to use image data to study human behavior and can be extended to other research areas.
doi_str_mv 10.1051/wujns/2024292145
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1051_wujns_2024292145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1051_wujns_2024292145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c835-9fd90baa4de097a7245c5bb1294282ecda9396bc6b63e00509bf66b218f2f79d3</originalsourceid><addsrcrecordid>eNpFkMtOwzAURC0EEqWwZ-kfCL224yR3WcqjlSpYtPvo2rHTVOQhJwH17wkUidWMZkazOIzdC3gQoMXiazw2_UKCjCVKEesLNhOIKooRs8vJA6SRmOprdtP3RwCFOhUz9rapqXR852pqhspOpqxdM9BQtQ1fdl1oyR64bwPfDWNxqpqSr8dpyx_dgT6rKZ92548nGuiWXXn66N3dn87Z_uV5v1pH2_fXzWq5jWymdIS-QDBEceEAU0plrK02RkiMZSadLQgVJsYmJlEOQAManyRGisxLn2Kh5gzOtza0fR-cz7tQ1RROuYD8B0f-iyP_x6G-AYrXVGs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Image Semantic Segmentation Approach for Studying Human Behavior on Image Data</title><source>Alma/SFX Local Collection</source><creator>ZHENG, Zhan ; CHEN, Da ; HUANG, Yanrong</creator><creatorcontrib>ZHENG, Zhan ; CHEN, Da ; HUANG, Yanrong</creatorcontrib><description>Image semantic segmentation is an essential technique for studying human behavior through image data. This paper proposes an image semantic segmentation method for human behavior research. Firstly, an end-to-end convolutional neural network architecture is proposed, which consists of a depth-separable jump-connected fully convolutional network and a conditional random field network; then jump-connected convolution is used to classify each pixel in the image, and an image semantic segmentation method based on convolutional neural network is proposed; and then a conditional random field network is used to improve the effect of image segmentation of human behavior and a linear modeling and nonlinear modeling method based on the semantic segmentation of conditional random field image is proposed. Finally, using the proposed image segmentation network, the input entrepreneurial image data is semantically segmented to obtain the contour features of the person; and the segmentation of the images in the medical field. The experimental results show that the image semantic segmentation method is effective. It is a new way to use image data to study human behavior and can be extended to other research areas.</description><identifier>ISSN: 1007-1202</identifier><identifier>EISSN: 1993-4998</identifier><identifier>DOI: 10.1051/wujns/2024292145</identifier><language>eng</language><ispartof>Wuhan University journal of natural sciences, 2024-04, Vol.29 (2), p.145-153</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c835-9fd90baa4de097a7245c5bb1294282ecda9396bc6b63e00509bf66b218f2f79d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>ZHENG, Zhan</creatorcontrib><creatorcontrib>CHEN, Da</creatorcontrib><creatorcontrib>HUANG, Yanrong</creatorcontrib><title>Image Semantic Segmentation Approach for Studying Human Behavior on Image Data</title><title>Wuhan University journal of natural sciences</title><description>Image semantic segmentation is an essential technique for studying human behavior through image data. This paper proposes an image semantic segmentation method for human behavior research. Firstly, an end-to-end convolutional neural network architecture is proposed, which consists of a depth-separable jump-connected fully convolutional network and a conditional random field network; then jump-connected convolution is used to classify each pixel in the image, and an image semantic segmentation method based on convolutional neural network is proposed; and then a conditional random field network is used to improve the effect of image segmentation of human behavior and a linear modeling and nonlinear modeling method based on the semantic segmentation of conditional random field image is proposed. Finally, using the proposed image segmentation network, the input entrepreneurial image data is semantically segmented to obtain the contour features of the person; and the segmentation of the images in the medical field. The experimental results show that the image semantic segmentation method is effective. It is a new way to use image data to study human behavior and can be extended to other research areas.</description><issn>1007-1202</issn><issn>1993-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAURC0EEqWwZ-kfCL224yR3WcqjlSpYtPvo2rHTVOQhJwH17wkUidWMZkazOIzdC3gQoMXiazw2_UKCjCVKEesLNhOIKooRs8vJA6SRmOprdtP3RwCFOhUz9rapqXR852pqhspOpqxdM9BQtQ1fdl1oyR64bwPfDWNxqpqSr8dpyx_dgT6rKZ92548nGuiWXXn66N3dn87Z_uV5v1pH2_fXzWq5jWymdIS-QDBEceEAU0plrK02RkiMZSadLQgVJsYmJlEOQAManyRGisxLn2Kh5gzOtza0fR-cz7tQ1RROuYD8B0f-iyP_x6G-AYrXVGs</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>ZHENG, Zhan</creator><creator>CHEN, Da</creator><creator>HUANG, Yanrong</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202404</creationdate><title>Image Semantic Segmentation Approach for Studying Human Behavior on Image Data</title><author>ZHENG, Zhan ; CHEN, Da ; HUANG, Yanrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c835-9fd90baa4de097a7245c5bb1294282ecda9396bc6b63e00509bf66b218f2f79d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHENG, Zhan</creatorcontrib><creatorcontrib>CHEN, Da</creatorcontrib><creatorcontrib>HUANG, Yanrong</creatorcontrib><collection>CrossRef</collection><jtitle>Wuhan University journal of natural sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHENG, Zhan</au><au>CHEN, Da</au><au>HUANG, Yanrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Semantic Segmentation Approach for Studying Human Behavior on Image Data</atitle><jtitle>Wuhan University journal of natural sciences</jtitle><date>2024-04</date><risdate>2024</risdate><volume>29</volume><issue>2</issue><spage>145</spage><epage>153</epage><pages>145-153</pages><issn>1007-1202</issn><eissn>1993-4998</eissn><abstract>Image semantic segmentation is an essential technique for studying human behavior through image data. This paper proposes an image semantic segmentation method for human behavior research. Firstly, an end-to-end convolutional neural network architecture is proposed, which consists of a depth-separable jump-connected fully convolutional network and a conditional random field network; then jump-connected convolution is used to classify each pixel in the image, and an image semantic segmentation method based on convolutional neural network is proposed; and then a conditional random field network is used to improve the effect of image segmentation of human behavior and a linear modeling and nonlinear modeling method based on the semantic segmentation of conditional random field image is proposed. Finally, using the proposed image segmentation network, the input entrepreneurial image data is semantically segmented to obtain the contour features of the person; and the segmentation of the images in the medical field. The experimental results show that the image semantic segmentation method is effective. It is a new way to use image data to study human behavior and can be extended to other research areas.</abstract><doi>10.1051/wujns/2024292145</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1007-1202
ispartof Wuhan University journal of natural sciences, 2024-04, Vol.29 (2), p.145-153
issn 1007-1202
1993-4998
language eng
recordid cdi_crossref_primary_10_1051_wujns_2024292145
source Alma/SFX Local Collection
title Image Semantic Segmentation Approach for Studying Human Behavior on Image Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T11%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Semantic%20Segmentation%20Approach%20for%20Studying%20Human%20Behavior%20on%20Image%20Data&rft.jtitle=Wuhan%20University%20journal%20of%20natural%20sciences&rft.au=ZHENG,%20Zhan&rft.date=2024-04&rft.volume=29&rft.issue=2&rft.spage=145&rft.epage=153&rft.pages=145-153&rft.issn=1007-1202&rft.eissn=1993-4998&rft_id=info:doi/10.1051/wujns/2024292145&rft_dat=%3Ccrossref%3E10_1051_wujns_2024292145%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true