Optimal QoS control of interacting service stations

We consider a system of three queues and two types of packets. Each packet arriving at this system finds in front of it a controller who either sends it in the first queue or rejects it according to a QoS criterion. When the packet finishes its service in the first queue, it is probabilistically rou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:R.A.I.R.O. Recherche opérationnelle 2002-07, Vol.36 (3), p.191-208
Hauptverfasser: Haqiq, Abdelkrim, Lambadaris, I., Mikou, N., Orozco–Barbosa, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue 3
container_start_page 191
container_title R.A.I.R.O. Recherche opérationnelle
container_volume 36
creator Haqiq, Abdelkrim
Lambadaris, I.
Mikou, N.
Orozco–Barbosa, L.
description We consider a system of three queues and two types of packets. Each packet arriving at this system finds in front of it a controller who either sends it in the first queue or rejects it according to a QoS criterion. When the packet finishes its service in the first queue, it is probabilistically routed to one of two other parallel queues. The objective is to minimize a QoS discounted cost over an infinite horizon. The cost function is composed of a waiting cost per packet in each queue and a rejection cost in the first queue. Subsequently, we generalize this problem by considering a system of (m+1) queues and n types of packets. We show that an optimal policy is monotonic.
doi_str_mv 10.1051/ro:2003002
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1051_ro_2003002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_80W_BX6R16V4_M</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-18764870d7463b44bbc147f141034bbf10a8b91efe3efe26ce0b98ff85d5416b3</originalsourceid><addsrcrecordid>eNpFj0tLBDEQhIMoOK5e_AVz8SKMdiZvb7r4gpXFt7eQySYSHSdLEkT_vSO76KFpmvq6qEJoH8MRBoaPUzxpAQhAu4Eq3CpoiORyE1VAlGqAMbWNdnJ-gxEijFSIzJclfJi-vo33tY1DSbGvo6_DUFwytoThtc4ufQbr6lxMCXHIu2jLmz67vfWeoMeL84fpVTObX15PT2eNbVVbGiwFp1LAQlBOOkq7zmIqPKYYyHh4DEZ2CjvvyDgttw46Jb2XbMEo5h2ZoMOVr00x5-S8XqYxa_rWGPRvXZ2iXtcd4YMVvDTZmt4nM9iQ_z-oIJIwOnLNigu5uK8_3aR3zQURTEt41mcv_A7zJ6pvyA8IgGMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal QoS control of interacting service stations</title><source>NUMDAM</source><creator>Haqiq, Abdelkrim ; Lambadaris, I. ; Mikou, N. ; Orozco–Barbosa, L.</creator><creatorcontrib>Haqiq, Abdelkrim ; Lambadaris, I. ; Mikou, N. ; Orozco–Barbosa, L.</creatorcontrib><description>We consider a system of three queues and two types of packets. Each packet arriving at this system finds in front of it a controller who either sends it in the first queue or rejects it according to a QoS criterion. When the packet finishes its service in the first queue, it is probabilistically routed to one of two other parallel queues. The objective is to minimize a QoS discounted cost over an infinite horizon. The cost function is composed of a waiting cost per packet in each queue and a rejection cost in the first queue. Subsequently, we generalize this problem by considering a system of (m+1) queues and n types of packets. We show that an optimal policy is monotonic.</description><identifier>ISSN: 0399-0559</identifier><identifier>EISSN: 1290-3868</identifier><identifier>DOI: 10.1051/ro:2003002</identifier><identifier>CODEN: RSROD3</identifier><language>eng</language><publisher>Paris: EDP Sciences</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; dynamic programming ; Exact sciences and technology ; flow control ; IP network ; Operational research and scientific management ; Operational research. Management science ; Policies ; Queues ; Queuing theory. Traffic theory ; Software</subject><ispartof>R.A.I.R.O. Recherche opérationnelle, 2002-07, Vol.36 (3), p.191-208</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c292t-18764870d7463b44bbc147f141034bbf10a8b91efe3efe26ce0b98ff85d5416b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14738354$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Haqiq, Abdelkrim</creatorcontrib><creatorcontrib>Lambadaris, I.</creatorcontrib><creatorcontrib>Mikou, N.</creatorcontrib><creatorcontrib>Orozco–Barbosa, L.</creatorcontrib><title>Optimal QoS control of interacting service stations</title><title>R.A.I.R.O. Recherche opérationnelle</title><description>We consider a system of three queues and two types of packets. Each packet arriving at this system finds in front of it a controller who either sends it in the first queue or rejects it according to a QoS criterion. When the packet finishes its service in the first queue, it is probabilistically routed to one of two other parallel queues. The objective is to minimize a QoS discounted cost over an infinite horizon. The cost function is composed of a waiting cost per packet in each queue and a rejection cost in the first queue. Subsequently, we generalize this problem by considering a system of (m+1) queues and n types of packets. We show that an optimal policy is monotonic.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>dynamic programming</subject><subject>Exact sciences and technology</subject><subject>flow control</subject><subject>IP network</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Policies</subject><subject>Queues</subject><subject>Queuing theory. Traffic theory</subject><subject>Software</subject><issn>0399-0559</issn><issn>1290-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpFj0tLBDEQhIMoOK5e_AVz8SKMdiZvb7r4gpXFt7eQySYSHSdLEkT_vSO76KFpmvq6qEJoH8MRBoaPUzxpAQhAu4Eq3CpoiORyE1VAlGqAMbWNdnJ-gxEijFSIzJclfJi-vo33tY1DSbGvo6_DUFwytoThtc4ufQbr6lxMCXHIu2jLmz67vfWeoMeL84fpVTObX15PT2eNbVVbGiwFp1LAQlBOOkq7zmIqPKYYyHh4DEZ2CjvvyDgttw46Jb2XbMEo5h2ZoMOVr00x5-S8XqYxa_rWGPRvXZ2iXtcd4YMVvDTZmt4nM9iQ_z-oIJIwOnLNigu5uK8_3aR3zQURTEt41mcv_A7zJ6pvyA8IgGMo</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Haqiq, Abdelkrim</creator><creator>Lambadaris, I.</creator><creator>Mikou, N.</creator><creator>Orozco–Barbosa, L.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020701</creationdate><title>Optimal QoS control of interacting service stations</title><author>Haqiq, Abdelkrim ; Lambadaris, I. ; Mikou, N. ; Orozco–Barbosa, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-18764870d7463b44bbc147f141034bbf10a8b91efe3efe26ce0b98ff85d5416b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>dynamic programming</topic><topic>Exact sciences and technology</topic><topic>flow control</topic><topic>IP network</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Policies</topic><topic>Queues</topic><topic>Queuing theory. Traffic theory</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haqiq, Abdelkrim</creatorcontrib><creatorcontrib>Lambadaris, I.</creatorcontrib><creatorcontrib>Mikou, N.</creatorcontrib><creatorcontrib>Orozco–Barbosa, L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>R.A.I.R.O. Recherche opérationnelle</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haqiq, Abdelkrim</au><au>Lambadaris, I.</au><au>Mikou, N.</au><au>Orozco–Barbosa, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal QoS control of interacting service stations</atitle><jtitle>R.A.I.R.O. Recherche opérationnelle</jtitle><date>2002-07-01</date><risdate>2002</risdate><volume>36</volume><issue>3</issue><spage>191</spage><epage>208</epage><pages>191-208</pages><issn>0399-0559</issn><eissn>1290-3868</eissn><coden>RSROD3</coden><abstract>We consider a system of three queues and two types of packets. Each packet arriving at this system finds in front of it a controller who either sends it in the first queue or rejects it according to a QoS criterion. When the packet finishes its service in the first queue, it is probabilistically routed to one of two other parallel queues. The objective is to minimize a QoS discounted cost over an infinite horizon. The cost function is composed of a waiting cost per packet in each queue and a rejection cost in the first queue. Subsequently, we generalize this problem by considering a system of (m+1) queues and n types of packets. We show that an optimal policy is monotonic.</abstract><cop>Paris</cop><pub>EDP Sciences</pub><doi>10.1051/ro:2003002</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0399-0559
ispartof R.A.I.R.O. Recherche opérationnelle, 2002-07, Vol.36 (3), p.191-208
issn 0399-0559
1290-3868
language eng
recordid cdi_crossref_primary_10_1051_ro_2003002
source NUMDAM
subjects Applied sciences
Computer science
control theory
systems
Computer systems and distributed systems. User interface
dynamic programming
Exact sciences and technology
flow control
IP network
Operational research and scientific management
Operational research. Management science
Policies
Queues
Queuing theory. Traffic theory
Software
title Optimal QoS control of interacting service stations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A34%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20QoS%20control%20of%20interacting%20service%20stations&rft.jtitle=R.A.I.R.O.%20Recherche%20op%C3%A9rationnelle&rft.au=Haqiq,%20Abdelkrim&rft.date=2002-07-01&rft.volume=36&rft.issue=3&rft.spage=191&rft.epage=208&rft.pages=191-208&rft.issn=0399-0559&rft.eissn=1290-3868&rft.coden=RSROD3&rft_id=info:doi/10.1051/ro:2003002&rft_dat=%3Cistex_cross%3Eark_67375_80W_BX6R16V4_M%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true