Approximation and error analysis of forward–backward SDEs driven by general Lévy processes using shot noise series representations
We consider the simulation of a system of decoupled forward–backward stochastic differential equations (FBSDEs) driven by a pure jump Lévy process L and an independent Brownian motion B . We allow the Lévy process L to have an infinite jump activity. Therefore, it is necessary for the simulation to...
Gespeichert in:
Veröffentlicht in: | Probability and statistics 2023, Vol.27, p.694-722 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 722 |
---|---|
container_issue | |
container_start_page | 694 |
container_title | Probability and statistics |
container_volume | 27 |
creator | Massing, Till |
description | We consider the simulation of a system of decoupled forward–backward stochastic differential equations (FBSDEs) driven by a pure jump Lévy process
L
and an independent Brownian motion
B
. We allow the Lévy process
L
to have an infinite jump activity. Therefore, it is necessary for the simulation to employ a finite approximation of its Lévy measure. We use the generalized shot noise series representation method by [26] to approximate the driving Lévy process
L
. We compute the
L
p
error,
p
≥ 2, between the true and the approximated FBSDEs which arises from the finite truncation of the shot noise series (given sufficient conditions for existence and uniqueness of the FBSDE). We also derive the
L
p
error between the true solution and the discretization of the approximated FBSDE using an appropriate backward Euler scheme. |
doi_str_mv | 10.1051/ps/2023013 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1051_ps_2023013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1051_ps_2023013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-42d05a17786781d15543fa0c027a85b9465fa9ececaa6ca70484043f26fc1b8a3</originalsourceid><addsrcrecordid>eNpNkEtOw0AQREcIJEJgwwlmjWQyH_-yjEL4SJFYAGurPW4Hg_FY3SbgHRtOwCk4BzfhJDiQBat-apWqVCXEsVanWkV60vLEKGOVtjtipE1sAmt1uvuP98UB84NSOrZhNBLvs7Yl_1o9QVf5RkJTSCTyNBDUPVcsfSlLTy9AxffbRw7ucYPy5mzBsqBqjY3Me7nCBglqufz6XPdycHTIjCyfuWpWku99JxtfMUpGqoY_YUvI2HS_sXwo9kqoGY-2dyzuzhe388tgeX1xNZ8tA2fipAtCU6gIdJKkcZLqQkdRaEtQTpkE0iifhnFUwhQdOoDYQaLCNFSDxMSl03kKdixO_nwdeWbCMmtpqE59plW2GTBrOdsOaH8A59BoTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approximation and error analysis of forward–backward SDEs driven by general Lévy processes using shot noise series representations</title><source>Alma/SFX Local Collection</source><creator>Massing, Till</creator><creatorcontrib>Massing, Till</creatorcontrib><description>We consider the simulation of a system of decoupled forward–backward stochastic differential equations (FBSDEs) driven by a pure jump Lévy process
L
and an independent Brownian motion
B
. We allow the Lévy process
L
to have an infinite jump activity. Therefore, it is necessary for the simulation to employ a finite approximation of its Lévy measure. We use the generalized shot noise series representation method by [26] to approximate the driving Lévy process
L
. We compute the
L
p
error,
p
≥ 2, between the true and the approximated FBSDEs which arises from the finite truncation of the shot noise series (given sufficient conditions for existence and uniqueness of the FBSDE). We also derive the
L
p
error between the true solution and the discretization of the approximated FBSDE using an appropriate backward Euler scheme.</description><identifier>ISSN: 1262-3318</identifier><identifier>EISSN: 1262-3318</identifier><identifier>DOI: 10.1051/ps/2023013</identifier><language>eng</language><ispartof>Probability and statistics, 2023, Vol.27, p.694-722</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-42d05a17786781d15543fa0c027a85b9465fa9ececaa6ca70484043f26fc1b8a3</citedby><cites>FETCH-LOGICAL-c267t-42d05a17786781d15543fa0c027a85b9465fa9ececaa6ca70484043f26fc1b8a3</cites><orcidid>0000-0002-8158-4030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Massing, Till</creatorcontrib><title>Approximation and error analysis of forward–backward SDEs driven by general Lévy processes using shot noise series representations</title><title>Probability and statistics</title><description>We consider the simulation of a system of decoupled forward–backward stochastic differential equations (FBSDEs) driven by a pure jump Lévy process
L
and an independent Brownian motion
B
. We allow the Lévy process
L
to have an infinite jump activity. Therefore, it is necessary for the simulation to employ a finite approximation of its Lévy measure. We use the generalized shot noise series representation method by [26] to approximate the driving Lévy process
L
. We compute the
L
p
error,
p
≥ 2, between the true and the approximated FBSDEs which arises from the finite truncation of the shot noise series (given sufficient conditions for existence and uniqueness of the FBSDE). We also derive the
L
p
error between the true solution and the discretization of the approximated FBSDE using an appropriate backward Euler scheme.</description><issn>1262-3318</issn><issn>1262-3318</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtOw0AQREcIJEJgwwlmjWQyH_-yjEL4SJFYAGurPW4Hg_FY3SbgHRtOwCk4BzfhJDiQBat-apWqVCXEsVanWkV60vLEKGOVtjtipE1sAmt1uvuP98UB84NSOrZhNBLvs7Yl_1o9QVf5RkJTSCTyNBDUPVcsfSlLTy9AxffbRw7ucYPy5mzBsqBqjY3Me7nCBglqufz6XPdycHTIjCyfuWpWku99JxtfMUpGqoY_YUvI2HS_sXwo9kqoGY-2dyzuzhe388tgeX1xNZ8tA2fipAtCU6gIdJKkcZLqQkdRaEtQTpkE0iifhnFUwhQdOoDYQaLCNFSDxMSl03kKdixO_nwdeWbCMmtpqE59plW2GTBrOdsOaH8A59BoTQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Massing, Till</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8158-4030</orcidid></search><sort><creationdate>2023</creationdate><title>Approximation and error analysis of forward–backward SDEs driven by general Lévy processes using shot noise series representations</title><author>Massing, Till</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-42d05a17786781d15543fa0c027a85b9465fa9ececaa6ca70484043f26fc1b8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Massing, Till</creatorcontrib><collection>CrossRef</collection><jtitle>Probability and statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Massing, Till</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation and error analysis of forward–backward SDEs driven by general Lévy processes using shot noise series representations</atitle><jtitle>Probability and statistics</jtitle><date>2023</date><risdate>2023</risdate><volume>27</volume><spage>694</spage><epage>722</epage><pages>694-722</pages><issn>1262-3318</issn><eissn>1262-3318</eissn><abstract>We consider the simulation of a system of decoupled forward–backward stochastic differential equations (FBSDEs) driven by a pure jump Lévy process
L
and an independent Brownian motion
B
. We allow the Lévy process
L
to have an infinite jump activity. Therefore, it is necessary for the simulation to employ a finite approximation of its Lévy measure. We use the generalized shot noise series representation method by [26] to approximate the driving Lévy process
L
. We compute the
L
p
error,
p
≥ 2, between the true and the approximated FBSDEs which arises from the finite truncation of the shot noise series (given sufficient conditions for existence and uniqueness of the FBSDE). We also derive the
L
p
error between the true solution and the discretization of the approximated FBSDE using an appropriate backward Euler scheme.</abstract><doi>10.1051/ps/2023013</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-8158-4030</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1262-3318 |
ispartof | Probability and statistics, 2023, Vol.27, p.694-722 |
issn | 1262-3318 1262-3318 |
language | eng |
recordid | cdi_crossref_primary_10_1051_ps_2023013 |
source | Alma/SFX Local Collection |
title | Approximation and error analysis of forward–backward SDEs driven by general Lévy processes using shot noise series representations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A10%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20and%20error%20analysis%20of%20forward%E2%80%93backward%20SDEs%20driven%20by%20general%20L%C3%A9vy%20processes%20using%20shot%20noise%20series%20representations&rft.jtitle=Probability%20and%20statistics&rft.au=Massing,%20Till&rft.date=2023&rft.volume=27&rft.spage=694&rft.epage=722&rft.pages=694-722&rft.issn=1262-3318&rft.eissn=1262-3318&rft_id=info:doi/10.1051/ps/2023013&rft_dat=%3Ccrossref%3E10_1051_ps_2023013%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |