The maximum principle for lumped-distributed control systems

This paper concerns the optimal control of lumped-distributed systems, that is control systems comprising interacting infinite and finite dimensional subsystems. An examplar lumpeddistributed system is an assembly of rotating components connected by flexible rods. The underlying mathematical model i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2024-11, Vol.30, p.87
Hauptverfasser: Marchini, E. M., Vinter, R. B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 87
container_title ESAIM. Control, optimisation and calculus of variations
container_volume 30
creator Marchini, E. M.
Vinter, R. B.
description This paper concerns the optimal control of lumped-distributed systems, that is control systems comprising interacting infinite and finite dimensional subsystems. An examplar lumpeddistributed system is an assembly of rotating components connected by flexible rods. The underlying mathematical model is a controlled semilinear evolution equation, in which nonlinear terms involve a projection of the full state onto a finite dimensional subspace. We derive necessary conditions of optimality in the form of a maximum principle, for a problem formulation which involves pathwise and end-point constraints on the lumped components of the state variable. A key feature of these necessary conditions is that they are expressed in terms of a costate variable taking values in a finite dimensional subspace (the subspace of the state space associated with the lumped variables). By contrast, costate trajectories in earlier-derived necessary conditions for optimal control of evolution equations evolve in the full (infinite dimensional) state space. The computational implications of the reduction techniques introduced in this paper to prove the maximum principle, which permit us to replace the original optimal control problem by one involving a reduced, finite dimensional, state space, will be explored in future work.
doi_str_mv 10.1051/cocv/2024076
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1051_cocv_2024076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1051_cocv_2024076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c122t-d63203c42a3ac8f17b71646b91d6b0d71e7e8e2f1e3edafac8b6b320bae9bc73</originalsourceid><addsrcrecordid>eNotj89KxDAYxIO44LruzQfIAxg3X1KTFrzIoquw4KX3kj9fsNJsS9KK-_a2uKeZw8wwP0LugT8Cf4Kd693PTnBRcK2uyBqEEkxKra8XXwlWAlQ35Dbnb85ByaJYk-f6C2k0v22cIh1Se3Lt0CENfaLdFAf0zLd5TK2dRvTU9acx9R3N5zxizHdkFUyXcXvRDanfXuv9Ozt-Hj72L0fmQIiReSUFl64QRhpXBtBWgyqUrcAry70G1FiiCIASvQlzxio7V6zByjotN-Thf9alPueEoZmPRpPODfBmAW8W8OYCLv8AcEpNwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The maximum principle for lumped-distributed control systems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Marchini, E. M. ; Vinter, R. B.</creator><creatorcontrib>Marchini, E. M. ; Vinter, R. B.</creatorcontrib><description>This paper concerns the optimal control of lumped-distributed systems, that is control systems comprising interacting infinite and finite dimensional subsystems. An examplar lumpeddistributed system is an assembly of rotating components connected by flexible rods. The underlying mathematical model is a controlled semilinear evolution equation, in which nonlinear terms involve a projection of the full state onto a finite dimensional subspace. We derive necessary conditions of optimality in the form of a maximum principle, for a problem formulation which involves pathwise and end-point constraints on the lumped components of the state variable. A key feature of these necessary conditions is that they are expressed in terms of a costate variable taking values in a finite dimensional subspace (the subspace of the state space associated with the lumped variables). By contrast, costate trajectories in earlier-derived necessary conditions for optimal control of evolution equations evolve in the full (infinite dimensional) state space. The computational implications of the reduction techniques introduced in this paper to prove the maximum principle, which permit us to replace the original optimal control problem by one involving a reduced, finite dimensional, state space, will be explored in future work.</description><identifier>ISSN: 1292-8119</identifier><identifier>EISSN: 1262-3377</identifier><identifier>DOI: 10.1051/cocv/2024076</identifier><language>eng</language><ispartof>ESAIM. Control, optimisation and calculus of variations, 2024-11, Vol.30, p.87</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c122t-d63203c42a3ac8f17b71646b91d6b0d71e7e8e2f1e3edafac8b6b320bae9bc73</cites><orcidid>0000-0003-3555-5105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Marchini, E. M.</creatorcontrib><creatorcontrib>Vinter, R. B.</creatorcontrib><title>The maximum principle for lumped-distributed control systems</title><title>ESAIM. Control, optimisation and calculus of variations</title><description>This paper concerns the optimal control of lumped-distributed systems, that is control systems comprising interacting infinite and finite dimensional subsystems. An examplar lumpeddistributed system is an assembly of rotating components connected by flexible rods. The underlying mathematical model is a controlled semilinear evolution equation, in which nonlinear terms involve a projection of the full state onto a finite dimensional subspace. We derive necessary conditions of optimality in the form of a maximum principle, for a problem formulation which involves pathwise and end-point constraints on the lumped components of the state variable. A key feature of these necessary conditions is that they are expressed in terms of a costate variable taking values in a finite dimensional subspace (the subspace of the state space associated with the lumped variables). By contrast, costate trajectories in earlier-derived necessary conditions for optimal control of evolution equations evolve in the full (infinite dimensional) state space. The computational implications of the reduction techniques introduced in this paper to prove the maximum principle, which permit us to replace the original optimal control problem by one involving a reduced, finite dimensional, state space, will be explored in future work.</description><issn>1292-8119</issn><issn>1262-3377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotj89KxDAYxIO44LruzQfIAxg3X1KTFrzIoquw4KX3kj9fsNJsS9KK-_a2uKeZw8wwP0LugT8Cf4Kd693PTnBRcK2uyBqEEkxKra8XXwlWAlQ35Dbnb85ByaJYk-f6C2k0v22cIh1Se3Lt0CENfaLdFAf0zLd5TK2dRvTU9acx9R3N5zxizHdkFUyXcXvRDanfXuv9Ozt-Hj72L0fmQIiReSUFl64QRhpXBtBWgyqUrcAry70G1FiiCIASvQlzxio7V6zByjotN-Thf9alPueEoZmPRpPODfBmAW8W8OYCLv8AcEpNwA</recordid><startdate>20241108</startdate><enddate>20241108</enddate><creator>Marchini, E. M.</creator><creator>Vinter, R. B.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3555-5105</orcidid></search><sort><creationdate>20241108</creationdate><title>The maximum principle for lumped-distributed control systems</title><author>Marchini, E. M. ; Vinter, R. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c122t-d63203c42a3ac8f17b71646b91d6b0d71e7e8e2f1e3edafac8b6b320bae9bc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchini, E. M.</creatorcontrib><creatorcontrib>Vinter, R. B.</creatorcontrib><collection>CrossRef</collection><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchini, E. M.</au><au>Vinter, R. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The maximum principle for lumped-distributed control systems</atitle><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle><date>2024-11-08</date><risdate>2024</risdate><volume>30</volume><spage>87</spage><pages>87-</pages><issn>1292-8119</issn><eissn>1262-3377</eissn><abstract>This paper concerns the optimal control of lumped-distributed systems, that is control systems comprising interacting infinite and finite dimensional subsystems. An examplar lumpeddistributed system is an assembly of rotating components connected by flexible rods. The underlying mathematical model is a controlled semilinear evolution equation, in which nonlinear terms involve a projection of the full state onto a finite dimensional subspace. We derive necessary conditions of optimality in the form of a maximum principle, for a problem formulation which involves pathwise and end-point constraints on the lumped components of the state variable. A key feature of these necessary conditions is that they are expressed in terms of a costate variable taking values in a finite dimensional subspace (the subspace of the state space associated with the lumped variables). By contrast, costate trajectories in earlier-derived necessary conditions for optimal control of evolution equations evolve in the full (infinite dimensional) state space. The computational implications of the reduction techniques introduced in this paper to prove the maximum principle, which permit us to replace the original optimal control problem by one involving a reduced, finite dimensional, state space, will be explored in future work.</abstract><doi>10.1051/cocv/2024076</doi><orcidid>https://orcid.org/0000-0003-3555-5105</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1292-8119
ispartof ESAIM. Control, optimisation and calculus of variations, 2024-11, Vol.30, p.87
issn 1292-8119
1262-3377
language eng
recordid cdi_crossref_primary_10_1051_cocv_2024076
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
title The maximum principle for lumped-distributed control systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A05%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20maximum%20principle%20for%20lumped-distributed%20control%20systems&rft.jtitle=ESAIM.%20Control,%20optimisation%20and%20calculus%20of%20variations&rft.au=Marchini,%20E.%20M.&rft.date=2024-11-08&rft.volume=30&rft.spage=87&rft.pages=87-&rft.issn=1292-8119&rft.eissn=1262-3377&rft_id=info:doi/10.1051/cocv/2024076&rft_dat=%3Ccrossref%3E10_1051_cocv_2024076%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true