Quantitative 2D propagation of smallness and control for 1D heat equations with power growth potentials

We study the relation between propagation of smallness in the plane and control for heat equations. The former has been proved by Zhu \cite{zhu2023remarks} who showed how the value of solutions in some small set propagates to a larger domain. By reviewing his proof, we establish a quantitative versi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2024-08
1. Verfasser: Wang, Yunlei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title ESAIM. Control, optimisation and calculus of variations
container_volume
creator Wang, Yunlei
description We study the relation between propagation of smallness in the plane and control for heat equations. The former has been proved by Zhu \cite{zhu2023remarks} who showed how the value of solutions in some small set propagates to a larger domain. By reviewing his proof, we establish a quantitative version with the explicit dependence of parameters. Using this explicit version, we establish new exact null-controllability results of 1D heat equations with any nonnegative power growth potentials $V\in L^\infty_{\mathrm{loc}}(\mathbb{R})$. As a key ingredient, new spectral inequalities are established. The control set $\Omega$ that we consider satisfy \begin{equation*}     \left|\Omega\cap [x-L\langle x\rangle ^{-s},x+L\langle x\rangle ^{-s}]\right|\ge \gamma^{\langle x\rangle^\tau}2L\langle x\rangle^{-s} \end{equation*} for some $\gamma\in(0,1)$, $L>0$, $\tau,s\ge 0$, and $\langle x\rangle:=(1+|x|^2)^{1 /2} $. In particular, the null-controllability result for the case of thick sets that allow the decay of the density (\textit{i.e.}, $s=0$ and $\tau\ge 0$) is included. These extend the results in \cite{zhu2023spectral} from $\Omega$ being the union of equidistributive open sets to thick sets in the 1-dimensional case, and in \cite{su2023quantitative} from bounded potentials to certain unbounded ones.
doi_str_mv 10.1051/cocv/2024057
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1051_cocv_2024057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1051_cocv_2024057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757-a1eed504b92958a903beff100e98eaca59e0e152805b6f191d1a0188543e99b83</originalsourceid><addsrcrecordid>eNotkFFPwjAUhRujiYi--QP6A5zc266sfTSgaEJiTHhfunELM2OdbWHx3wvI03dOcnIePsYeEZ4RFE5qXx8mAkQOqrhiIxRTkUlZFNenbESmEc0tu4vxGwCnMs9HbPO1t11qkk3NgbiY8z743m6O1XfcOx53tm07ipHbbs1r36XgW-584DjnW7KJ08_-vI58aNKW936gwDfBD-eS6Phu23jPbtwR9HDhmK3eXlez92z5ufiYvSyzulBFZpForSCvjDBKWwOyIucQgIwmW1tlCAiV0KCqqUODa7SAWqtckjGVlmP29H9bBx9jIFf2odnZ8FsilCdH5clReXEk_wBXnlwC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantitative 2D propagation of smallness and control for 1D heat equations with power growth potentials</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Yunlei</creator><creatorcontrib>Wang, Yunlei</creatorcontrib><description>We study the relation between propagation of smallness in the plane and control for heat equations. The former has been proved by Zhu \cite{zhu2023remarks} who showed how the value of solutions in some small set propagates to a larger domain. By reviewing his proof, we establish a quantitative version with the explicit dependence of parameters. Using this explicit version, we establish new exact null-controllability results of 1D heat equations with any nonnegative power growth potentials $V\in L^\infty_{\mathrm{loc}}(\mathbb{R})$. As a key ingredient, new spectral inequalities are established. The control set $\Omega$ that we consider satisfy \begin{equation*}     \left|\Omega\cap [x-L\langle x\rangle ^{-s},x+L\langle x\rangle ^{-s}]\right|\ge \gamma^{\langle x\rangle^\tau}2L\langle x\rangle^{-s} \end{equation*} for some $\gamma\in(0,1)$, $L&gt;0$, $\tau,s\ge 0$, and $\langle x\rangle:=(1+|x|^2)^{1 /2} $. In particular, the null-controllability result for the case of thick sets that allow the decay of the density (\textit{i.e.}, $s=0$ and $\tau\ge 0$) is included. These extend the results in \cite{zhu2023spectral} from $\Omega$ being the union of equidistributive open sets to thick sets in the 1-dimensional case, and in \cite{su2023quantitative} from bounded potentials to certain unbounded ones.</description><identifier>ISSN: 1292-8119</identifier><identifier>EISSN: 1262-3377</identifier><identifier>DOI: 10.1051/cocv/2024057</identifier><language>eng</language><ispartof>ESAIM. Control, optimisation and calculus of variations, 2024-08</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Yunlei</creatorcontrib><title>Quantitative 2D propagation of smallness and control for 1D heat equations with power growth potentials</title><title>ESAIM. Control, optimisation and calculus of variations</title><description>We study the relation between propagation of smallness in the plane and control for heat equations. The former has been proved by Zhu \cite{zhu2023remarks} who showed how the value of solutions in some small set propagates to a larger domain. By reviewing his proof, we establish a quantitative version with the explicit dependence of parameters. Using this explicit version, we establish new exact null-controllability results of 1D heat equations with any nonnegative power growth potentials $V\in L^\infty_{\mathrm{loc}}(\mathbb{R})$. As a key ingredient, new spectral inequalities are established. The control set $\Omega$ that we consider satisfy \begin{equation*}     \left|\Omega\cap [x-L\langle x\rangle ^{-s},x+L\langle x\rangle ^{-s}]\right|\ge \gamma^{\langle x\rangle^\tau}2L\langle x\rangle^{-s} \end{equation*} for some $\gamma\in(0,1)$, $L&gt;0$, $\tau,s\ge 0$, and $\langle x\rangle:=(1+|x|^2)^{1 /2} $. In particular, the null-controllability result for the case of thick sets that allow the decay of the density (\textit{i.e.}, $s=0$ and $\tau\ge 0$) is included. These extend the results in \cite{zhu2023spectral} from $\Omega$ being the union of equidistributive open sets to thick sets in the 1-dimensional case, and in \cite{su2023quantitative} from bounded potentials to certain unbounded ones.</description><issn>1292-8119</issn><issn>1262-3377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkFFPwjAUhRujiYi--QP6A5zc266sfTSgaEJiTHhfunELM2OdbWHx3wvI03dOcnIePsYeEZ4RFE5qXx8mAkQOqrhiIxRTkUlZFNenbESmEc0tu4vxGwCnMs9HbPO1t11qkk3NgbiY8z743m6O1XfcOx53tm07ipHbbs1r36XgW-584DjnW7KJ08_-vI58aNKW936gwDfBD-eS6Phu23jPbtwR9HDhmK3eXlez92z5ufiYvSyzulBFZpForSCvjDBKWwOyIucQgIwmW1tlCAiV0KCqqUODa7SAWqtckjGVlmP29H9bBx9jIFf2odnZ8FsilCdH5clReXEk_wBXnlwC</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Wang, Yunlei</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Quantitative 2D propagation of smallness and control for 1D heat equations with power growth potentials</title><author>Wang, Yunlei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757-a1eed504b92958a903beff100e98eaca59e0e152805b6f191d1a0188543e99b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yunlei</creatorcontrib><collection>CrossRef</collection><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yunlei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative 2D propagation of smallness and control for 1D heat equations with power growth potentials</atitle><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle><date>2024-08-01</date><risdate>2024</risdate><issn>1292-8119</issn><eissn>1262-3377</eissn><abstract>We study the relation between propagation of smallness in the plane and control for heat equations. The former has been proved by Zhu \cite{zhu2023remarks} who showed how the value of solutions in some small set propagates to a larger domain. By reviewing his proof, we establish a quantitative version with the explicit dependence of parameters. Using this explicit version, we establish new exact null-controllability results of 1D heat equations with any nonnegative power growth potentials $V\in L^\infty_{\mathrm{loc}}(\mathbb{R})$. As a key ingredient, new spectral inequalities are established. The control set $\Omega$ that we consider satisfy \begin{equation*}     \left|\Omega\cap [x-L\langle x\rangle ^{-s},x+L\langle x\rangle ^{-s}]\right|\ge \gamma^{\langle x\rangle^\tau}2L\langle x\rangle^{-s} \end{equation*} for some $\gamma\in(0,1)$, $L&gt;0$, $\tau,s\ge 0$, and $\langle x\rangle:=(1+|x|^2)^{1 /2} $. In particular, the null-controllability result for the case of thick sets that allow the decay of the density (\textit{i.e.}, $s=0$ and $\tau\ge 0$) is included. These extend the results in \cite{zhu2023spectral} from $\Omega$ being the union of equidistributive open sets to thick sets in the 1-dimensional case, and in \cite{su2023quantitative} from bounded potentials to certain unbounded ones.</abstract><doi>10.1051/cocv/2024057</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1292-8119
ispartof ESAIM. Control, optimisation and calculus of variations, 2024-08
issn 1292-8119
1262-3377
language eng
recordid cdi_crossref_primary_10_1051_cocv_2024057
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Quantitative 2D propagation of smallness and control for 1D heat equations with power growth potentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%202D%20propagation%20of%20smallness%20and%20control%20for%201D%20heat%20equations%20with%20power%20growth%20potentials&rft.jtitle=ESAIM.%20Control,%20optimisation%20and%20calculus%20of%20variations&rft.au=Wang,%20Yunlei&rft.date=2024-08-01&rft.issn=1292-8119&rft.eissn=1262-3377&rft_id=info:doi/10.1051/cocv/2024057&rft_dat=%3Ccrossref%3E10_1051_cocv_2024057%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true