K2 and Spitzer phase curves of the rocky ultra-short-period planet K2-141 b hint at a tenuous rock vapor atmosphere

K2-141 b is a transiting, small (1.5 R ⊕ ) ultra-short-period (USP) planet discovered by the Kepler space telescope orbiting a K-dwarf host star every 6.7 h. The planet's high surface temperature of more than 2000 K makes it an excellent target for thermal emission observations. Here we present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2022-08, Vol.664, p.A79
Hauptverfasser: Zieba, S., Zilinskas, M., Kreidberg, L., Nguyen, T. G., Miguel, Y., Cowan, N. B., Pierrehumbert, R., Carone, L., Dang, L., Hammond, M., Louden, T., Lupu, R., Malavolta, L., Stevenson, K. B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A79
container_title Astronomy and astrophysics (Berlin)
container_volume 664
creator Zieba, S.
Zilinskas, M.
Kreidberg, L.
Nguyen, T. G.
Miguel, Y.
Cowan, N. B.
Pierrehumbert, R.
Carone, L.
Dang, L.
Hammond, M.
Louden, T.
Lupu, R.
Malavolta, L.
Stevenson, K. B.
description K2-141 b is a transiting, small (1.5 R ⊕ ) ultra-short-period (USP) planet discovered by the Kepler space telescope orbiting a K-dwarf host star every 6.7 h. The planet's high surface temperature of more than 2000 K makes it an excellent target for thermal emission observations. Here we present 65 h of continuous photometric observations of K2-141 b collected with Spitzer's Infrared Array Camera (IRAC) Channel 2 at 4.5 μm spanning ten full orbits of the planet. We measured an infrared eclipse depth of ${f_{{{\rm{p}} \mathord{\left/ {\vphantom {{\rm{p}} {{{\rm{f}}_{\rm{*}}} \right. \kern-\nulldelimiterspace} {{{\rm{f}}_{\rm{*}}} = 142.9_{ - 39.0}^{38.5}$ ppm and a peak to trough amplitude variation of $A = 120.6_{ - 43.0}^{42.3}$ ppm. The best fit model to the Spitzer data shows no significant thermal hotspot offset, in contrast to the previously observed offset for the well-studied USP planet 55 Cnc e. We also jointly analyzed the new Spitzer observations with the photometry collected by Kepler during two separate K2 campaigns. We modeled the planetary emission with a range of toy models that include a reflective and a thermal contribution. With a two-temperature model, we measured a dayside temperature of ${T_{{\rm{p,d}}} = 2049_{ - 359}^{362}$ K and a night-side temperature that is consistent with zero ( T p,n < 1712 K at 2 σ ). Models with a steep dayside temperature gradient provide a better fit to the data than a uniform dayside temperature (ΔBIC = 22.2). We also found evidence for a nonzero geometric albedo ${A_{\rm{g}}} = 0.282_{ - 0.078}^{0.070}$. We also compared the data to a physically motivated, pseudo-2D rock vapor model and a 1D turbulent boundary layer model. Both models fit the data well. Notably, we found that the optical eclipse depth can be explained by thermal emission from a hot inversion layer, rather than reflected light. A thermal inversion may also be responsible for the deep optical eclipse observed for another USP, Kepler-10 b. Finally, we significantly improved the ephemerides for K2-141 b and c, which will facilitate further follow-up observations of this interesting system with state-of-the-art observatories such as James Webb Space Telescope.
doi_str_mv 10.1051/0004-6361/202142912
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1051_0004_6361_202142912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1051_0004_6361_202142912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-2386b5e2283cbe9ae8bd864536927a1aa3642555059ed4c47ab803fb6e7c89143</originalsourceid><addsrcrecordid>eNo9kN1Kw0AQhRdRsFafwJt5gbX7n-RSin-04IV6HTbJhETb7LK7KdSnN1EpDAxzOHPgfITccnbHmeYrxpiiRhq-EkxwJQouzsiCKykoy5Q5J4uT45Jcxfg5nYLnckHiRoAdGnjzffrGAL6zEaEewwEjuBZShxBc_XWEcZeCpbFzIVGPoXcN-J0dMMFGUK44VND1QwI7DSQcRjfG31c4WO_CpO9d9B0GvCYXrd1FvPnfS_Lx-PC-fqbb16eX9f2W1qJQiQqZm0qjELmsKyws5lWTG6WlKURmubXSKKG1ZrrARtUqs1XOZFsZzOq8mMovifzLrYOLMWBb-tDvbTiWnJUzt3KmUs5UyhM3-QNKrl_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>K2 and Spitzer phase curves of the rocky ultra-short-period planet K2-141 b hint at a tenuous rock vapor atmosphere</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zieba, S. ; Zilinskas, M. ; Kreidberg, L. ; Nguyen, T. G. ; Miguel, Y. ; Cowan, N. B. ; Pierrehumbert, R. ; Carone, L. ; Dang, L. ; Hammond, M. ; Louden, T. ; Lupu, R. ; Malavolta, L. ; Stevenson, K. B.</creator><creatorcontrib>Zieba, S. ; Zilinskas, M. ; Kreidberg, L. ; Nguyen, T. G. ; Miguel, Y. ; Cowan, N. B. ; Pierrehumbert, R. ; Carone, L. ; Dang, L. ; Hammond, M. ; Louden, T. ; Lupu, R. ; Malavolta, L. ; Stevenson, K. B.</creatorcontrib><description>K2-141 b is a transiting, small (1.5 R ⊕ ) ultra-short-period (USP) planet discovered by the Kepler space telescope orbiting a K-dwarf host star every 6.7 h. The planet's high surface temperature of more than 2000 K makes it an excellent target for thermal emission observations. Here we present 65 h of continuous photometric observations of K2-141 b collected with Spitzer's Infrared Array Camera (IRAC) Channel 2 at 4.5 μm spanning ten full orbits of the planet. We measured an infrared eclipse depth of ${f_{{{\rm{p}} \mathord{\left/ {\vphantom {{\rm{p}} {{{\rm{f}}_{\rm{*}}} \right. \kern-\nulldelimiterspace} {{{\rm{f}}_{\rm{*}}} = 142.9_{ - 39.0}^{38.5}$ ppm and a peak to trough amplitude variation of $A = 120.6_{ - 43.0}^{42.3}$ ppm. The best fit model to the Spitzer data shows no significant thermal hotspot offset, in contrast to the previously observed offset for the well-studied USP planet 55 Cnc e. We also jointly analyzed the new Spitzer observations with the photometry collected by Kepler during two separate K2 campaigns. We modeled the planetary emission with a range of toy models that include a reflective and a thermal contribution. With a two-temperature model, we measured a dayside temperature of ${T_{{\rm{p,d}}} = 2049_{ - 359}^{362}$ K and a night-side temperature that is consistent with zero ( T p,n &lt; 1712 K at 2 σ ). Models with a steep dayside temperature gradient provide a better fit to the data than a uniform dayside temperature (ΔBIC = 22.2). We also found evidence for a nonzero geometric albedo ${A_{\rm{g}}} = 0.282_{ - 0.078}^{0.070}$. We also compared the data to a physically motivated, pseudo-2D rock vapor model and a 1D turbulent boundary layer model. Both models fit the data well. Notably, we found that the optical eclipse depth can be explained by thermal emission from a hot inversion layer, rather than reflected light. A thermal inversion may also be responsible for the deep optical eclipse observed for another USP, Kepler-10 b. Finally, we significantly improved the ephemerides for K2-141 b and c, which will facilitate further follow-up observations of this interesting system with state-of-the-art observatories such as James Webb Space Telescope.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202142912</identifier><language>eng</language><ispartof>Astronomy and astrophysics (Berlin), 2022-08, Vol.664, p.A79</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-2386b5e2283cbe9ae8bd864536927a1aa3642555059ed4c47ab803fb6e7c89143</citedby><cites>FETCH-LOGICAL-c294t-2386b5e2283cbe9ae8bd864536927a1aa3642555059ed4c47ab803fb6e7c89143</cites><orcidid>0000-0001-6129-5699 ; 0000-0003-4987-6591 ; 0000-0003-0562-6750 ; 0000-0002-5887-1197 ; 0000-0002-6893-522X ; 0000-0003-0514-1147 ; 0000-0001-9355-3752 ; 0000-0002-0747-8862 ; 0000-0002-6492-2085 ; 0000-0002-7352-7941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3714,27901,27902</link.rule.ids></links><search><creatorcontrib>Zieba, S.</creatorcontrib><creatorcontrib>Zilinskas, M.</creatorcontrib><creatorcontrib>Kreidberg, L.</creatorcontrib><creatorcontrib>Nguyen, T. G.</creatorcontrib><creatorcontrib>Miguel, Y.</creatorcontrib><creatorcontrib>Cowan, N. B.</creatorcontrib><creatorcontrib>Pierrehumbert, R.</creatorcontrib><creatorcontrib>Carone, L.</creatorcontrib><creatorcontrib>Dang, L.</creatorcontrib><creatorcontrib>Hammond, M.</creatorcontrib><creatorcontrib>Louden, T.</creatorcontrib><creatorcontrib>Lupu, R.</creatorcontrib><creatorcontrib>Malavolta, L.</creatorcontrib><creatorcontrib>Stevenson, K. B.</creatorcontrib><title>K2 and Spitzer phase curves of the rocky ultra-short-period planet K2-141 b hint at a tenuous rock vapor atmosphere</title><title>Astronomy and astrophysics (Berlin)</title><description>K2-141 b is a transiting, small (1.5 R ⊕ ) ultra-short-period (USP) planet discovered by the Kepler space telescope orbiting a K-dwarf host star every 6.7 h. The planet's high surface temperature of more than 2000 K makes it an excellent target for thermal emission observations. Here we present 65 h of continuous photometric observations of K2-141 b collected with Spitzer's Infrared Array Camera (IRAC) Channel 2 at 4.5 μm spanning ten full orbits of the planet. We measured an infrared eclipse depth of ${f_{{{\rm{p}} \mathord{\left/ {\vphantom {{\rm{p}} {{{\rm{f}}_{\rm{*}}} \right. \kern-\nulldelimiterspace} {{{\rm{f}}_{\rm{*}}} = 142.9_{ - 39.0}^{38.5}$ ppm and a peak to trough amplitude variation of $A = 120.6_{ - 43.0}^{42.3}$ ppm. The best fit model to the Spitzer data shows no significant thermal hotspot offset, in contrast to the previously observed offset for the well-studied USP planet 55 Cnc e. We also jointly analyzed the new Spitzer observations with the photometry collected by Kepler during two separate K2 campaigns. We modeled the planetary emission with a range of toy models that include a reflective and a thermal contribution. With a two-temperature model, we measured a dayside temperature of ${T_{{\rm{p,d}}} = 2049_{ - 359}^{362}$ K and a night-side temperature that is consistent with zero ( T p,n &lt; 1712 K at 2 σ ). Models with a steep dayside temperature gradient provide a better fit to the data than a uniform dayside temperature (ΔBIC = 22.2). We also found evidence for a nonzero geometric albedo ${A_{\rm{g}}} = 0.282_{ - 0.078}^{0.070}$. We also compared the data to a physically motivated, pseudo-2D rock vapor model and a 1D turbulent boundary layer model. Both models fit the data well. Notably, we found that the optical eclipse depth can be explained by thermal emission from a hot inversion layer, rather than reflected light. A thermal inversion may also be responsible for the deep optical eclipse observed for another USP, Kepler-10 b. Finally, we significantly improved the ephemerides for K2-141 b and c, which will facilitate further follow-up observations of this interesting system with state-of-the-art observatories such as James Webb Space Telescope.</description><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kN1Kw0AQhRdRsFafwJt5gbX7n-RSin-04IV6HTbJhETb7LK7KdSnN1EpDAxzOHPgfITccnbHmeYrxpiiRhq-EkxwJQouzsiCKykoy5Q5J4uT45Jcxfg5nYLnckHiRoAdGnjzffrGAL6zEaEewwEjuBZShxBc_XWEcZeCpbFzIVGPoXcN-J0dMMFGUK44VND1QwI7DSQcRjfG31c4WO_CpO9d9B0GvCYXrd1FvPnfS_Lx-PC-fqbb16eX9f2W1qJQiQqZm0qjELmsKyws5lWTG6WlKURmubXSKKG1ZrrARtUqs1XOZFsZzOq8mMovifzLrYOLMWBb-tDvbTiWnJUzt3KmUs5UyhM3-QNKrl_E</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Zieba, S.</creator><creator>Zilinskas, M.</creator><creator>Kreidberg, L.</creator><creator>Nguyen, T. G.</creator><creator>Miguel, Y.</creator><creator>Cowan, N. B.</creator><creator>Pierrehumbert, R.</creator><creator>Carone, L.</creator><creator>Dang, L.</creator><creator>Hammond, M.</creator><creator>Louden, T.</creator><creator>Lupu, R.</creator><creator>Malavolta, L.</creator><creator>Stevenson, K. B.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6129-5699</orcidid><orcidid>https://orcid.org/0000-0003-4987-6591</orcidid><orcidid>https://orcid.org/0000-0003-0562-6750</orcidid><orcidid>https://orcid.org/0000-0002-5887-1197</orcidid><orcidid>https://orcid.org/0000-0002-6893-522X</orcidid><orcidid>https://orcid.org/0000-0003-0514-1147</orcidid><orcidid>https://orcid.org/0000-0001-9355-3752</orcidid><orcidid>https://orcid.org/0000-0002-0747-8862</orcidid><orcidid>https://orcid.org/0000-0002-6492-2085</orcidid><orcidid>https://orcid.org/0000-0002-7352-7941</orcidid></search><sort><creationdate>20220801</creationdate><title>K2 and Spitzer phase curves of the rocky ultra-short-period planet K2-141 b hint at a tenuous rock vapor atmosphere</title><author>Zieba, S. ; Zilinskas, M. ; Kreidberg, L. ; Nguyen, T. G. ; Miguel, Y. ; Cowan, N. B. ; Pierrehumbert, R. ; Carone, L. ; Dang, L. ; Hammond, M. ; Louden, T. ; Lupu, R. ; Malavolta, L. ; Stevenson, K. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-2386b5e2283cbe9ae8bd864536927a1aa3642555059ed4c47ab803fb6e7c89143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zieba, S.</creatorcontrib><creatorcontrib>Zilinskas, M.</creatorcontrib><creatorcontrib>Kreidberg, L.</creatorcontrib><creatorcontrib>Nguyen, T. G.</creatorcontrib><creatorcontrib>Miguel, Y.</creatorcontrib><creatorcontrib>Cowan, N. B.</creatorcontrib><creatorcontrib>Pierrehumbert, R.</creatorcontrib><creatorcontrib>Carone, L.</creatorcontrib><creatorcontrib>Dang, L.</creatorcontrib><creatorcontrib>Hammond, M.</creatorcontrib><creatorcontrib>Louden, T.</creatorcontrib><creatorcontrib>Lupu, R.</creatorcontrib><creatorcontrib>Malavolta, L.</creatorcontrib><creatorcontrib>Stevenson, K. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zieba, S.</au><au>Zilinskas, M.</au><au>Kreidberg, L.</au><au>Nguyen, T. G.</au><au>Miguel, Y.</au><au>Cowan, N. B.</au><au>Pierrehumbert, R.</au><au>Carone, L.</au><au>Dang, L.</au><au>Hammond, M.</au><au>Louden, T.</au><au>Lupu, R.</au><au>Malavolta, L.</au><au>Stevenson, K. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>K2 and Spitzer phase curves of the rocky ultra-short-period planet K2-141 b hint at a tenuous rock vapor atmosphere</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>664</volume><spage>A79</spage><pages>A79-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>K2-141 b is a transiting, small (1.5 R ⊕ ) ultra-short-period (USP) planet discovered by the Kepler space telescope orbiting a K-dwarf host star every 6.7 h. The planet's high surface temperature of more than 2000 K makes it an excellent target for thermal emission observations. Here we present 65 h of continuous photometric observations of K2-141 b collected with Spitzer's Infrared Array Camera (IRAC) Channel 2 at 4.5 μm spanning ten full orbits of the planet. We measured an infrared eclipse depth of ${f_{{{\rm{p}} \mathord{\left/ {\vphantom {{\rm{p}} {{{\rm{f}}_{\rm{*}}} \right. \kern-\nulldelimiterspace} {{{\rm{f}}_{\rm{*}}} = 142.9_{ - 39.0}^{38.5}$ ppm and a peak to trough amplitude variation of $A = 120.6_{ - 43.0}^{42.3}$ ppm. The best fit model to the Spitzer data shows no significant thermal hotspot offset, in contrast to the previously observed offset for the well-studied USP planet 55 Cnc e. We also jointly analyzed the new Spitzer observations with the photometry collected by Kepler during two separate K2 campaigns. We modeled the planetary emission with a range of toy models that include a reflective and a thermal contribution. With a two-temperature model, we measured a dayside temperature of ${T_{{\rm{p,d}}} = 2049_{ - 359}^{362}$ K and a night-side temperature that is consistent with zero ( T p,n &lt; 1712 K at 2 σ ). Models with a steep dayside temperature gradient provide a better fit to the data than a uniform dayside temperature (ΔBIC = 22.2). We also found evidence for a nonzero geometric albedo ${A_{\rm{g}}} = 0.282_{ - 0.078}^{0.070}$. We also compared the data to a physically motivated, pseudo-2D rock vapor model and a 1D turbulent boundary layer model. Both models fit the data well. Notably, we found that the optical eclipse depth can be explained by thermal emission from a hot inversion layer, rather than reflected light. A thermal inversion may also be responsible for the deep optical eclipse observed for another USP, Kepler-10 b. Finally, we significantly improved the ephemerides for K2-141 b and c, which will facilitate further follow-up observations of this interesting system with state-of-the-art observatories such as James Webb Space Telescope.</abstract><doi>10.1051/0004-6361/202142912</doi><orcidid>https://orcid.org/0000-0001-6129-5699</orcidid><orcidid>https://orcid.org/0000-0003-4987-6591</orcidid><orcidid>https://orcid.org/0000-0003-0562-6750</orcidid><orcidid>https://orcid.org/0000-0002-5887-1197</orcidid><orcidid>https://orcid.org/0000-0002-6893-522X</orcidid><orcidid>https://orcid.org/0000-0003-0514-1147</orcidid><orcidid>https://orcid.org/0000-0001-9355-3752</orcidid><orcidid>https://orcid.org/0000-0002-0747-8862</orcidid><orcidid>https://orcid.org/0000-0002-6492-2085</orcidid><orcidid>https://orcid.org/0000-0002-7352-7941</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2022-08, Vol.664, p.A79
issn 0004-6361
1432-0746
language eng
recordid cdi_crossref_primary_10_1051_0004_6361_202142912
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title K2 and Spitzer phase curves of the rocky ultra-short-period planet K2-141 b hint at a tenuous rock vapor atmosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T04%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=K2%20and%20Spitzer%20phase%20curves%20of%20the%20rocky%20ultra-short-period%20planet%20K2-141%20b%20hint%20at%20a%20tenuous%20rock%20vapor%20atmosphere&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Zieba,%20S.&rft.date=2022-08-01&rft.volume=664&rft.spage=A79&rft.pages=A79-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202142912&rft_dat=%3Ccrossref%3E10_1051_0004_6361_202142912%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true