A global view on star formation: The GLOSTAR Galactic plane survey: II. Supernova remnants in the first quadrant of the Milky Way

Context. The properties of the population of Galactic supernova remnants (SNRs) are essential to our understanding of the dynamics of the interstellar medium (ISM) in the Milky Way. However, the completeness of the catalog of Galactic SNRs is expected to be only ~30%, with on order 700 SNRs yet to b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astron.Astrophys 2021-07, Vol.651, p.A86
Hauptverfasser: Dokara, R., Brunthaler, A., Menten, K. M., Dzib, S. A., Reich, W., Cotton, W. D., Anderson, L. D., Chen, C.-H. R., Gong, Y., Medina, S.-N. X., Ortiz-León, G. N., Rugel, M., Urquhart, J. S., Wyrowski, F., Yang, A. Y., Beuther, H., Billington, S. J., Csengeri, T., Carrasco-González, C., Roy, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A86
container_title Astron.Astrophys
container_volume 651
creator Dokara, R.
Brunthaler, A.
Menten, K. M.
Dzib, S. A.
Reich, W.
Cotton, W. D.
Anderson, L. D.
Chen, C.-H. R.
Gong, Y.
Medina, S.-N. X.
Ortiz-León, G. N.
Rugel, M.
Urquhart, J. S.
Wyrowski, F.
Yang, A. Y.
Beuther, H.
Billington, S. J.
Csengeri, T.
Carrasco-González, C.
Roy, N.
description Context. The properties of the population of Galactic supernova remnants (SNRs) are essential to our understanding of the dynamics of the interstellar medium (ISM) in the Milky Way. However, the completeness of the catalog of Galactic SNRs is expected to be only ~30%, with on order 700 SNRs yet to be detected. Deep interferometric radio continuum surveys of the Galactic plane help in rectifying this apparent deficiency by identifying low surface brightness SNRs and compact SNRs that have not been detected in previous surveys. However, SNRs are routinely confused with H  II regions, which can have similar radio morphologies. Radio spectral index, polarization, and emission at mid-infrared (MIR) wavelengths can help distinguish between SNRs and H  II regions. Aims. We aim to identify SNR candidates using continuum images from the Karl G. Jansky Very Large Array GLObal view of the STAR formation in the Milky Way (GLOSTAR) survey. Methods. GLOSTAR is a C-band (4–8 GHz) radio wavelength survey of the Galactic plane covering 358° ≤ l ≤ 60°, | b |≤ 1°. The continuum images from this survey, which resulted from observations with the most compact configuration of the array, have an angular resolution of 18″. We searched for SNRs in these images to identify known SNRs, previously identified SNR candidates, and new SNR candidates. We study these objects in MIR surveys and the GLOSTAR polarization data to classify their emission as thermal or nonthermal. Results. We identify 157 SNR candidates, of which 80 are new. Polarization measurements provide evidence of nonthermal emission from nine of these candidates. We find that two previously identified candidates are filaments. We also detect emission from 91 of the 94 known SNRs in the survey region. Four of these are reclassified as H  II regions following detection in MIR surveys. Conclusions. The better sensitivity and resolution of the GLOSTAR data have led to the identification of 157 SNR candidates, along with the reclassification of several misidentified objects. We show that the polarization measurements can identify nonthermal emission, despite the diffuse Galactic synchrotron emission. These results underscore the importance of higher resolution and higher sensitivity radio continuum data in identifying and confirming SNRs.
doi_str_mv 10.1051/0004-6361/202039873
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1051_0004_6361_202039873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03186198v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-eb3c9a2c60817f08d1fa5fb2ebef263a31cbb0fc1ed456c005955d43efa7d9e13</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFZ_gZe9eoid2Uk2ibdYtBUCBa3nZbLZtZG0KdlY6b_XoPQ0vOF77_AJcYtwj5DgDADiSJPGmQIFlGcpnYkJxqQiSGN9LiYn4lJchfD5GxVmNBGPhfxou4pbeWjct-x2MgzcS9_1Wx6abvcg1xsnF-XqbV28ygW3bIfGyn3LOyfDV39wx2tx4bkN7ub_TsX789N6vozK1eJlXpSRVURD5CqyOSurIcPUQ1aj58RXylXOK01MaKsKvEVXx4m2AEmeJHVMznNa5w5pKu7-djfcmn3fbLk_mo4bsyxKM_6AMNOYZ4eRpT_W9l0IvfOnAoIZlZlRiBmFmJMy-gFDmV0D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A global view on star formation: The GLOSTAR Galactic plane survey: II. Supernova remnants in the first quadrant of the Milky Way</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dokara, R. ; Brunthaler, A. ; Menten, K. M. ; Dzib, S. A. ; Reich, W. ; Cotton, W. D. ; Anderson, L. D. ; Chen, C.-H. R. ; Gong, Y. ; Medina, S.-N. X. ; Ortiz-León, G. N. ; Rugel, M. ; Urquhart, J. S. ; Wyrowski, F. ; Yang, A. Y. ; Beuther, H. ; Billington, S. J. ; Csengeri, T. ; Carrasco-González, C. ; Roy, N.</creator><creatorcontrib>Dokara, R. ; Brunthaler, A. ; Menten, K. M. ; Dzib, S. A. ; Reich, W. ; Cotton, W. D. ; Anderson, L. D. ; Chen, C.-H. R. ; Gong, Y. ; Medina, S.-N. X. ; Ortiz-León, G. N. ; Rugel, M. ; Urquhart, J. S. ; Wyrowski, F. ; Yang, A. Y. ; Beuther, H. ; Billington, S. J. ; Csengeri, T. ; Carrasco-González, C. ; Roy, N.</creatorcontrib><description>Context. The properties of the population of Galactic supernova remnants (SNRs) are essential to our understanding of the dynamics of the interstellar medium (ISM) in the Milky Way. However, the completeness of the catalog of Galactic SNRs is expected to be only ~30%, with on order 700 SNRs yet to be detected. Deep interferometric radio continuum surveys of the Galactic plane help in rectifying this apparent deficiency by identifying low surface brightness SNRs and compact SNRs that have not been detected in previous surveys. However, SNRs are routinely confused with H  II regions, which can have similar radio morphologies. Radio spectral index, polarization, and emission at mid-infrared (MIR) wavelengths can help distinguish between SNRs and H  II regions. Aims. We aim to identify SNR candidates using continuum images from the Karl G. Jansky Very Large Array GLObal view of the STAR formation in the Milky Way (GLOSTAR) survey. Methods. GLOSTAR is a C-band (4–8 GHz) radio wavelength survey of the Galactic plane covering 358° ≤ l ≤ 60°, | b |≤ 1°. The continuum images from this survey, which resulted from observations with the most compact configuration of the array, have an angular resolution of 18″. We searched for SNRs in these images to identify known SNRs, previously identified SNR candidates, and new SNR candidates. We study these objects in MIR surveys and the GLOSTAR polarization data to classify their emission as thermal or nonthermal. Results. We identify 157 SNR candidates, of which 80 are new. Polarization measurements provide evidence of nonthermal emission from nine of these candidates. We find that two previously identified candidates are filaments. We also detect emission from 91 of the 94 known SNRs in the survey region. Four of these are reclassified as H  II regions following detection in MIR surveys. Conclusions. The better sensitivity and resolution of the GLOSTAR data have led to the identification of 157 SNR candidates, along with the reclassification of several misidentified objects. We show that the polarization measurements can identify nonthermal emission, despite the diffuse Galactic synchrotron emission. These results underscore the importance of higher resolution and higher sensitivity radio continuum data in identifying and confirming SNRs.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202039873</identifier><language>eng</language><subject>Astrophysics ; Physics</subject><ispartof>Astron.Astrophys, 2021-07, Vol.651, p.A86</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-eb3c9a2c60817f08d1fa5fb2ebef263a31cbb0fc1ed456c005955d43efa7d9e13</cites><orcidid>0000-0001-6459-0669 ; 0000-0002-1971-6725 ; 0000-0002-5313-6409 ; 0000-0001-9829-7727 ; 0000-0003-4546-2623 ; 0000-0001-8800-1793 ; 0000-0002-1605-8050 ; 0000-0003-4468-761X ; 0000-0002-3866-414X ; 0000-0002-3925-9365 ; 0000-0001-6010-6200 ; 0000-0002-2863-676X ; 0000-0002-1700-090X ; 0000-0002-6018-1371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3714,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03186198$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dokara, R.</creatorcontrib><creatorcontrib>Brunthaler, A.</creatorcontrib><creatorcontrib>Menten, K. M.</creatorcontrib><creatorcontrib>Dzib, S. A.</creatorcontrib><creatorcontrib>Reich, W.</creatorcontrib><creatorcontrib>Cotton, W. D.</creatorcontrib><creatorcontrib>Anderson, L. D.</creatorcontrib><creatorcontrib>Chen, C.-H. R.</creatorcontrib><creatorcontrib>Gong, Y.</creatorcontrib><creatorcontrib>Medina, S.-N. X.</creatorcontrib><creatorcontrib>Ortiz-León, G. N.</creatorcontrib><creatorcontrib>Rugel, M.</creatorcontrib><creatorcontrib>Urquhart, J. S.</creatorcontrib><creatorcontrib>Wyrowski, F.</creatorcontrib><creatorcontrib>Yang, A. Y.</creatorcontrib><creatorcontrib>Beuther, H.</creatorcontrib><creatorcontrib>Billington, S. J.</creatorcontrib><creatorcontrib>Csengeri, T.</creatorcontrib><creatorcontrib>Carrasco-González, C.</creatorcontrib><creatorcontrib>Roy, N.</creatorcontrib><title>A global view on star formation: The GLOSTAR Galactic plane survey: II. Supernova remnants in the first quadrant of the Milky Way</title><title>Astron.Astrophys</title><description>Context. The properties of the population of Galactic supernova remnants (SNRs) are essential to our understanding of the dynamics of the interstellar medium (ISM) in the Milky Way. However, the completeness of the catalog of Galactic SNRs is expected to be only ~30%, with on order 700 SNRs yet to be detected. Deep interferometric radio continuum surveys of the Galactic plane help in rectifying this apparent deficiency by identifying low surface brightness SNRs and compact SNRs that have not been detected in previous surveys. However, SNRs are routinely confused with H  II regions, which can have similar radio morphologies. Radio spectral index, polarization, and emission at mid-infrared (MIR) wavelengths can help distinguish between SNRs and H  II regions. Aims. We aim to identify SNR candidates using continuum images from the Karl G. Jansky Very Large Array GLObal view of the STAR formation in the Milky Way (GLOSTAR) survey. Methods. GLOSTAR is a C-band (4–8 GHz) radio wavelength survey of the Galactic plane covering 358° ≤ l ≤ 60°, | b |≤ 1°. The continuum images from this survey, which resulted from observations with the most compact configuration of the array, have an angular resolution of 18″. We searched for SNRs in these images to identify known SNRs, previously identified SNR candidates, and new SNR candidates. We study these objects in MIR surveys and the GLOSTAR polarization data to classify their emission as thermal or nonthermal. Results. We identify 157 SNR candidates, of which 80 are new. Polarization measurements provide evidence of nonthermal emission from nine of these candidates. We find that two previously identified candidates are filaments. We also detect emission from 91 of the 94 known SNRs in the survey region. Four of these are reclassified as H  II regions following detection in MIR surveys. Conclusions. The better sensitivity and resolution of the GLOSTAR data have led to the identification of 157 SNR candidates, along with the reclassification of several misidentified objects. We show that the polarization measurements can identify nonthermal emission, despite the diffuse Galactic synchrotron emission. These results underscore the importance of higher resolution and higher sensitivity radio continuum data in identifying and confirming SNRs.</description><subject>Astrophysics</subject><subject>Physics</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQhRdRsFZ_gZe9eoid2Uk2ibdYtBUCBa3nZbLZtZG0KdlY6b_XoPQ0vOF77_AJcYtwj5DgDADiSJPGmQIFlGcpnYkJxqQiSGN9LiYn4lJchfD5GxVmNBGPhfxou4pbeWjct-x2MgzcS9_1Wx6abvcg1xsnF-XqbV28ygW3bIfGyn3LOyfDV39wx2tx4bkN7ub_TsX789N6vozK1eJlXpSRVURD5CqyOSurIcPUQ1aj58RXylXOK01MaKsKvEVXx4m2AEmeJHVMznNa5w5pKu7-djfcmn3fbLk_mo4bsyxKM_6AMNOYZ4eRpT_W9l0IvfOnAoIZlZlRiBmFmJMy-gFDmV0D</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Dokara, R.</creator><creator>Brunthaler, A.</creator><creator>Menten, K. M.</creator><creator>Dzib, S. A.</creator><creator>Reich, W.</creator><creator>Cotton, W. D.</creator><creator>Anderson, L. D.</creator><creator>Chen, C.-H. R.</creator><creator>Gong, Y.</creator><creator>Medina, S.-N. X.</creator><creator>Ortiz-León, G. N.</creator><creator>Rugel, M.</creator><creator>Urquhart, J. S.</creator><creator>Wyrowski, F.</creator><creator>Yang, A. Y.</creator><creator>Beuther, H.</creator><creator>Billington, S. J.</creator><creator>Csengeri, T.</creator><creator>Carrasco-González, C.</creator><creator>Roy, N.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6459-0669</orcidid><orcidid>https://orcid.org/0000-0002-1971-6725</orcidid><orcidid>https://orcid.org/0000-0002-5313-6409</orcidid><orcidid>https://orcid.org/0000-0001-9829-7727</orcidid><orcidid>https://orcid.org/0000-0003-4546-2623</orcidid><orcidid>https://orcid.org/0000-0001-8800-1793</orcidid><orcidid>https://orcid.org/0000-0002-1605-8050</orcidid><orcidid>https://orcid.org/0000-0003-4468-761X</orcidid><orcidid>https://orcid.org/0000-0002-3866-414X</orcidid><orcidid>https://orcid.org/0000-0002-3925-9365</orcidid><orcidid>https://orcid.org/0000-0001-6010-6200</orcidid><orcidid>https://orcid.org/0000-0002-2863-676X</orcidid><orcidid>https://orcid.org/0000-0002-1700-090X</orcidid><orcidid>https://orcid.org/0000-0002-6018-1371</orcidid></search><sort><creationdate>20210701</creationdate><title>A global view on star formation: The GLOSTAR Galactic plane survey</title><author>Dokara, R. ; Brunthaler, A. ; Menten, K. M. ; Dzib, S. A. ; Reich, W. ; Cotton, W. D. ; Anderson, L. D. ; Chen, C.-H. R. ; Gong, Y. ; Medina, S.-N. X. ; Ortiz-León, G. N. ; Rugel, M. ; Urquhart, J. S. ; Wyrowski, F. ; Yang, A. Y. ; Beuther, H. ; Billington, S. J. ; Csengeri, T. ; Carrasco-González, C. ; Roy, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-eb3c9a2c60817f08d1fa5fb2ebef263a31cbb0fc1ed456c005955d43efa7d9e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dokara, R.</creatorcontrib><creatorcontrib>Brunthaler, A.</creatorcontrib><creatorcontrib>Menten, K. M.</creatorcontrib><creatorcontrib>Dzib, S. A.</creatorcontrib><creatorcontrib>Reich, W.</creatorcontrib><creatorcontrib>Cotton, W. D.</creatorcontrib><creatorcontrib>Anderson, L. D.</creatorcontrib><creatorcontrib>Chen, C.-H. R.</creatorcontrib><creatorcontrib>Gong, Y.</creatorcontrib><creatorcontrib>Medina, S.-N. X.</creatorcontrib><creatorcontrib>Ortiz-León, G. N.</creatorcontrib><creatorcontrib>Rugel, M.</creatorcontrib><creatorcontrib>Urquhart, J. S.</creatorcontrib><creatorcontrib>Wyrowski, F.</creatorcontrib><creatorcontrib>Yang, A. Y.</creatorcontrib><creatorcontrib>Beuther, H.</creatorcontrib><creatorcontrib>Billington, S. J.</creatorcontrib><creatorcontrib>Csengeri, T.</creatorcontrib><creatorcontrib>Carrasco-González, C.</creatorcontrib><creatorcontrib>Roy, N.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astron.Astrophys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dokara, R.</au><au>Brunthaler, A.</au><au>Menten, K. M.</au><au>Dzib, S. A.</au><au>Reich, W.</au><au>Cotton, W. D.</au><au>Anderson, L. D.</au><au>Chen, C.-H. R.</au><au>Gong, Y.</au><au>Medina, S.-N. X.</au><au>Ortiz-León, G. N.</au><au>Rugel, M.</au><au>Urquhart, J. S.</au><au>Wyrowski, F.</au><au>Yang, A. Y.</au><au>Beuther, H.</au><au>Billington, S. J.</au><au>Csengeri, T.</au><au>Carrasco-González, C.</au><au>Roy, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A global view on star formation: The GLOSTAR Galactic plane survey: II. Supernova remnants in the first quadrant of the Milky Way</atitle><jtitle>Astron.Astrophys</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>651</volume><spage>A86</spage><pages>A86-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>Context. The properties of the population of Galactic supernova remnants (SNRs) are essential to our understanding of the dynamics of the interstellar medium (ISM) in the Milky Way. However, the completeness of the catalog of Galactic SNRs is expected to be only ~30%, with on order 700 SNRs yet to be detected. Deep interferometric radio continuum surveys of the Galactic plane help in rectifying this apparent deficiency by identifying low surface brightness SNRs and compact SNRs that have not been detected in previous surveys. However, SNRs are routinely confused with H  II regions, which can have similar radio morphologies. Radio spectral index, polarization, and emission at mid-infrared (MIR) wavelengths can help distinguish between SNRs and H  II regions. Aims. We aim to identify SNR candidates using continuum images from the Karl G. Jansky Very Large Array GLObal view of the STAR formation in the Milky Way (GLOSTAR) survey. Methods. GLOSTAR is a C-band (4–8 GHz) radio wavelength survey of the Galactic plane covering 358° ≤ l ≤ 60°, | b |≤ 1°. The continuum images from this survey, which resulted from observations with the most compact configuration of the array, have an angular resolution of 18″. We searched for SNRs in these images to identify known SNRs, previously identified SNR candidates, and new SNR candidates. We study these objects in MIR surveys and the GLOSTAR polarization data to classify their emission as thermal or nonthermal. Results. We identify 157 SNR candidates, of which 80 are new. Polarization measurements provide evidence of nonthermal emission from nine of these candidates. We find that two previously identified candidates are filaments. We also detect emission from 91 of the 94 known SNRs in the survey region. Four of these are reclassified as H  II regions following detection in MIR surveys. Conclusions. The better sensitivity and resolution of the GLOSTAR data have led to the identification of 157 SNR candidates, along with the reclassification of several misidentified objects. We show that the polarization measurements can identify nonthermal emission, despite the diffuse Galactic synchrotron emission. These results underscore the importance of higher resolution and higher sensitivity radio continuum data in identifying and confirming SNRs.</abstract><doi>10.1051/0004-6361/202039873</doi><orcidid>https://orcid.org/0000-0001-6459-0669</orcidid><orcidid>https://orcid.org/0000-0002-1971-6725</orcidid><orcidid>https://orcid.org/0000-0002-5313-6409</orcidid><orcidid>https://orcid.org/0000-0001-9829-7727</orcidid><orcidid>https://orcid.org/0000-0003-4546-2623</orcidid><orcidid>https://orcid.org/0000-0001-8800-1793</orcidid><orcidid>https://orcid.org/0000-0002-1605-8050</orcidid><orcidid>https://orcid.org/0000-0003-4468-761X</orcidid><orcidid>https://orcid.org/0000-0002-3866-414X</orcidid><orcidid>https://orcid.org/0000-0002-3925-9365</orcidid><orcidid>https://orcid.org/0000-0001-6010-6200</orcidid><orcidid>https://orcid.org/0000-0002-2863-676X</orcidid><orcidid>https://orcid.org/0000-0002-1700-090X</orcidid><orcidid>https://orcid.org/0000-0002-6018-1371</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astron.Astrophys, 2021-07, Vol.651, p.A86
issn 0004-6361
1432-0746
language eng
recordid cdi_crossref_primary_10_1051_0004_6361_202039873
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Astrophysics
Physics
title A global view on star formation: The GLOSTAR Galactic plane survey: II. Supernova remnants in the first quadrant of the Milky Way
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20global%20view%20on%20star%20formation:%20The%20GLOSTAR%20Galactic%20plane%20survey:%20II.%20Supernova%20remnants%20in%20the%20first%20quadrant%20of%20the%20Milky%20Way&rft.jtitle=Astron.Astrophys&rft.au=Dokara,%20R.&rft.date=2021-07-01&rft.volume=651&rft.spage=A86&rft.pages=A86-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202039873&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03186198v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true