Bondi accretion for adiabatic flows onto a massive black hole with an accretion disc: The one dimensional problem

We present the classical Bondi accretion theory for the case of non-isothermal accretion processes onto a supermassive black hole (SMBH), including the effects of X-ray heating and the radiation force due to electron scattering and spectral lines. The radiation field is calculated by considering an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2019-11, Vol.631, p.A13
Hauptverfasser: Ramírez-Velásquez, J. M., Sigalotti, L. Di G., Gabbasov, R., Klapp, J., Contreras, E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A13
container_title Astronomy and astrophysics (Berlin)
container_volume 631
creator Ramírez-Velásquez, J. M.
Sigalotti, L. Di G.
Gabbasov, R.
Klapp, J.
Contreras, E.
description We present the classical Bondi accretion theory for the case of non-isothermal accretion processes onto a supermassive black hole (SMBH), including the effects of X-ray heating and the radiation force due to electron scattering and spectral lines. The radiation field is calculated by considering an optically thick, geometrically thin, standard accretion disc as the emitter of UV photons and a spherical central object as a source of X-ray emission. In our analysis, the UV emission from the accretion disc is assumed to have an angular dependence, and the X-ray radiation from the central object is assumed to be isotropic. This allows us to build streamlines in any angular direction. The influence of both types of radiation is evaluated for different flux fractions of the X-ray and UV emissions with and without the effects of spectral line driving. We find that the radiation emitted near the SMBH interacts with the infalling matter and modifies the accretion dynamics. In the presence of line driving, a transition takes place from pure type 1 and 2 to type 5 solutions, which takes place regardless of whether the UV emission dominates the X-ray emission. We computed the radiative factors at which this transition occurs, and discard type 5 solution from all our models. We also provide estimated values of the accretion radius and accretion rate in terms of the classical Bondi values. The results are useful for constructing proper initial conditions for time-dependent hydrodynamical simulations of accretion flows onto SMBHs at the centre of galaxies.
doi_str_mv 10.1051/0004-6361/201935917
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1051_0004_6361_201935917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1051_0004_6361_201935917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c199t-89c934c459e4178ecd72e80d00088fe5de2dd9fd61ba9c8214b801b8dcf70d643</originalsourceid><addsrcrecordid>eNpNUMFKAzEUDKLgWv0CL_mBtXlJdjc5alErFLzUc8i-JDS63UiyWPx7uyjF0zAwM8wMIbfA7oA1sGSMyboVLSw5Ay0aDd0ZqUAKXrNOtuekOikuyVUp70fKQYmKbB_S6CK1iNlPMY00pEyti7a3U0QahnQoNI1TopbubSnxy9N-sPhBd2nw9BCnHbXjP7-LBa_JRbBD8Td_uCBvT4_b1brevD6_rO43NYLWU600aiFRNtpL6JRH13GvmDuWUyr4xnnunA6uhd5qVBxkrxj0ymHomGulWBDxm4s5lZJ9MJ857m3-NsDMfIyZZ5t5tjkdI34AkYRWSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bondi accretion for adiabatic flows onto a massive black hole with an accretion disc: The one dimensional problem</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ramírez-Velásquez, J. M. ; Sigalotti, L. Di G. ; Gabbasov, R. ; Klapp, J. ; Contreras, E.</creator><creatorcontrib>Ramírez-Velásquez, J. M. ; Sigalotti, L. Di G. ; Gabbasov, R. ; Klapp, J. ; Contreras, E.</creatorcontrib><description>We present the classical Bondi accretion theory for the case of non-isothermal accretion processes onto a supermassive black hole (SMBH), including the effects of X-ray heating and the radiation force due to electron scattering and spectral lines. The radiation field is calculated by considering an optically thick, geometrically thin, standard accretion disc as the emitter of UV photons and a spherical central object as a source of X-ray emission. In our analysis, the UV emission from the accretion disc is assumed to have an angular dependence, and the X-ray radiation from the central object is assumed to be isotropic. This allows us to build streamlines in any angular direction. The influence of both types of radiation is evaluated for different flux fractions of the X-ray and UV emissions with and without the effects of spectral line driving. We find that the radiation emitted near the SMBH interacts with the infalling matter and modifies the accretion dynamics. In the presence of line driving, a transition takes place from pure type 1 and 2 to type 5 solutions, which takes place regardless of whether the UV emission dominates the X-ray emission. We computed the radiative factors at which this transition occurs, and discard type 5 solution from all our models. We also provide estimated values of the accretion radius and accretion rate in terms of the classical Bondi values. The results are useful for constructing proper initial conditions for time-dependent hydrodynamical simulations of accretion flows onto SMBHs at the centre of galaxies.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201935917</identifier><language>eng</language><ispartof>Astronomy and astrophysics (Berlin), 2019-11, Vol.631, p.A13</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c199t-89c934c459e4178ecd72e80d00088fe5de2dd9fd61ba9c8214b801b8dcf70d643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3714,27901,27902</link.rule.ids></links><search><creatorcontrib>Ramírez-Velásquez, J. M.</creatorcontrib><creatorcontrib>Sigalotti, L. Di G.</creatorcontrib><creatorcontrib>Gabbasov, R.</creatorcontrib><creatorcontrib>Klapp, J.</creatorcontrib><creatorcontrib>Contreras, E.</creatorcontrib><title>Bondi accretion for adiabatic flows onto a massive black hole with an accretion disc: The one dimensional problem</title><title>Astronomy and astrophysics (Berlin)</title><description>We present the classical Bondi accretion theory for the case of non-isothermal accretion processes onto a supermassive black hole (SMBH), including the effects of X-ray heating and the radiation force due to electron scattering and spectral lines. The radiation field is calculated by considering an optically thick, geometrically thin, standard accretion disc as the emitter of UV photons and a spherical central object as a source of X-ray emission. In our analysis, the UV emission from the accretion disc is assumed to have an angular dependence, and the X-ray radiation from the central object is assumed to be isotropic. This allows us to build streamlines in any angular direction. The influence of both types of radiation is evaluated for different flux fractions of the X-ray and UV emissions with and without the effects of spectral line driving. We find that the radiation emitted near the SMBH interacts with the infalling matter and modifies the accretion dynamics. In the presence of line driving, a transition takes place from pure type 1 and 2 to type 5 solutions, which takes place regardless of whether the UV emission dominates the X-ray emission. We computed the radiative factors at which this transition occurs, and discard type 5 solution from all our models. We also provide estimated values of the accretion radius and accretion rate in terms of the classical Bondi values. The results are useful for constructing proper initial conditions for time-dependent hydrodynamical simulations of accretion flows onto SMBHs at the centre of galaxies.</description><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNUMFKAzEUDKLgWv0CL_mBtXlJdjc5alErFLzUc8i-JDS63UiyWPx7uyjF0zAwM8wMIbfA7oA1sGSMyboVLSw5Ay0aDd0ZqUAKXrNOtuekOikuyVUp70fKQYmKbB_S6CK1iNlPMY00pEyti7a3U0QahnQoNI1TopbubSnxy9N-sPhBd2nw9BCnHbXjP7-LBa_JRbBD8Td_uCBvT4_b1brevD6_rO43NYLWU600aiFRNtpL6JRH13GvmDuWUyr4xnnunA6uhd5qVBxkrxj0ymHomGulWBDxm4s5lZJ9MJ857m3-NsDMfIyZZ5t5tjkdI34AkYRWSg</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Ramírez-Velásquez, J. M.</creator><creator>Sigalotti, L. Di G.</creator><creator>Gabbasov, R.</creator><creator>Klapp, J.</creator><creator>Contreras, E.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>Bondi accretion for adiabatic flows onto a massive black hole with an accretion disc</title><author>Ramírez-Velásquez, J. M. ; Sigalotti, L. Di G. ; Gabbasov, R. ; Klapp, J. ; Contreras, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c199t-89c934c459e4178ecd72e80d00088fe5de2dd9fd61ba9c8214b801b8dcf70d643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramírez-Velásquez, J. M.</creatorcontrib><creatorcontrib>Sigalotti, L. Di G.</creatorcontrib><creatorcontrib>Gabbasov, R.</creatorcontrib><creatorcontrib>Klapp, J.</creatorcontrib><creatorcontrib>Contreras, E.</creatorcontrib><collection>CrossRef</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramírez-Velásquez, J. M.</au><au>Sigalotti, L. Di G.</au><au>Gabbasov, R.</au><au>Klapp, J.</au><au>Contreras, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bondi accretion for adiabatic flows onto a massive black hole with an accretion disc: The one dimensional problem</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>631</volume><spage>A13</spage><pages>A13-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>We present the classical Bondi accretion theory for the case of non-isothermal accretion processes onto a supermassive black hole (SMBH), including the effects of X-ray heating and the radiation force due to electron scattering and spectral lines. The radiation field is calculated by considering an optically thick, geometrically thin, standard accretion disc as the emitter of UV photons and a spherical central object as a source of X-ray emission. In our analysis, the UV emission from the accretion disc is assumed to have an angular dependence, and the X-ray radiation from the central object is assumed to be isotropic. This allows us to build streamlines in any angular direction. The influence of both types of radiation is evaluated for different flux fractions of the X-ray and UV emissions with and without the effects of spectral line driving. We find that the radiation emitted near the SMBH interacts with the infalling matter and modifies the accretion dynamics. In the presence of line driving, a transition takes place from pure type 1 and 2 to type 5 solutions, which takes place regardless of whether the UV emission dominates the X-ray emission. We computed the radiative factors at which this transition occurs, and discard type 5 solution from all our models. We also provide estimated values of the accretion radius and accretion rate in terms of the classical Bondi values. The results are useful for constructing proper initial conditions for time-dependent hydrodynamical simulations of accretion flows onto SMBHs at the centre of galaxies.</abstract><doi>10.1051/0004-6361/201935917</doi></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2019-11, Vol.631, p.A13
issn 0004-6361
1432-0746
language eng
recordid cdi_crossref_primary_10_1051_0004_6361_201935917
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Bondi accretion for adiabatic flows onto a massive black hole with an accretion disc: The one dimensional problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bondi%20accretion%20for%20adiabatic%20flows%20onto%20a%20massive%20black%20hole%20with%20an%20accretion%20disc:%20The%20one%20dimensional%20problem&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Ram%C3%ADrez-Vel%C3%A1squez,%20J.%20M.&rft.date=2019-11-01&rft.volume=631&rft.spage=A13&rft.pages=A13-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201935917&rft_dat=%3Ccrossref%3E10_1051_0004_6361_201935917%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true