Tidal heating and the habitability of the TRAPPIST-1 exoplanets
Context. New estimates of the masses and radii of the seven planets orbiting the ultracool M-dwarf TRAPPIST-1 star permit improved modelling of their compositions, heating by tidal dissipation, and removal of tidal heat by solid-state convection. Aims. Here we compute the heat flux due to insolation...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2019-04, Vol.624, p.A2 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Context. New estimates of the masses and radii of the seven planets orbiting the ultracool M-dwarf TRAPPIST-1 star permit improved modelling of their compositions, heating by tidal dissipation, and removal of tidal heat by solid-state convection. Aims. Here we compute the heat flux due to insolation and tidal heating for the inner four planets. Methods. We apply a Maxwell viscoelastic rheology to compute the tidal response of the planets using the volume-weighted average of the viscosities and rigidities of the metal, rock, high-pressure ice, and liquid water/ice I layers. Results. We show that TRAPPIST-1d and e can avoid entering a runaway greenhouse state. Planet e is the most likely to support a habitable environment, with Earth-like surface temperatures and possibly liquid water oceans. Planet d also avoids a runaway greenhouse, if its surface reflectance is at least as high as that of the Earth. Planets b and c, closer to the star, have heat fluxes high enough to trigger a runaway greenhouse and to support volcanism on the surfaces of their rock layers, rendering them too warm for life. Planets f, g, and h are too far from the star to experience significant tidal heating, and likely have solid ice surfaces with possible subsurface liquid water oceans. |
---|---|
ISSN: | 0004-6361 1432-0746 |
DOI: | 10.1051/0004-6361/201834254 |