Can grain growth explain transition disks?

Aims. Grain growth has been suggested as one possible explanation for the diminished dust optical depths in the inner regions of protoplanetary “transition” disks. In this work, we directly test this hypothesis in the context of current models of grain growth and transport. Methods. A set of dust ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2012-08, Vol.544, p.A79
Hauptverfasser: Birnstiel, T., Andrews, S. M., Ercolano, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A79
container_title Astronomy and astrophysics (Berlin)
container_volume 544
creator Birnstiel, T.
Andrews, S. M.
Ercolano, B.
description Aims. Grain growth has been suggested as one possible explanation for the diminished dust optical depths in the inner regions of protoplanetary “transition” disks. In this work, we directly test this hypothesis in the context of current models of grain growth and transport. Methods. A set of dust evolution models with different disk shapes, masses, turbulence parameters, and drift efficiencies is combined with radiative transfer calculations in order to derive theoretical spectral energy distributions (SEDs) and images. Results. We find that grain growth and transport effects can indeed produce dips in the infrared SED, as typically found in observations of transition disks. Our models achieve the necessary reduction of mass in small dust by producing larger grains, yet not large enough to be fragmenting efficiently. However, this population of large grains is still detectable at millimeter wavelengths. Even if perfect sticking is assumed and radial drift is neglected, a large population of dust grains is left behind because the time scales on which they are swept up by the larger grains are too long. This mechanism thus fails to reproduce the large emission cavities observed in recent millimeter-wave interferometric images of accreting transition disks.
doi_str_mv 10.1051/0004-6361/201219262
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1051_0004_6361_201219262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_80W_ZLFWH3FR_G</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-952d0faf2e1ac35552dd00c0ecc2b369fce9abba09550ce23113052a42d6da043</originalsourceid><addsrcrecordid>eNo9j0FLAzEQhYMoWKu_wEsvXoS1k5kk7Z5EitsKBUGUgpcwzWY1tnZLsmD99-5S2csMj3lveJ8Q1xLuJGg5BgCVGTJyjCBR5mjwRAykIsxgosypGPSOc3GR0lcrUU5pIG5nvBt9RA7drH-az5E_7LedbCLvUmhCvRuVIW3S_aU4q3ib_NX_Hoq34vF1tsiWz_On2cMyc2SwyXKNJVRcoZfsSOtWlgAOvHO4JpNXzue8XjPkWoPzSFISaGSFpSkZFA0FHf-6WKcUfWX3MXxz_LUSbIdrOxjbwdget03dHFN7To63VdvehdRH0SitSE9bX3b0hdT4Q3_nuLFmQhNtp7Cy78titaDixc7pD768Yu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Can grain growth explain transition disks?</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Birnstiel, T. ; Andrews, S. M. ; Ercolano, B.</creator><creatorcontrib>Birnstiel, T. ; Andrews, S. M. ; Ercolano, B.</creatorcontrib><description>Aims. Grain growth has been suggested as one possible explanation for the diminished dust optical depths in the inner regions of protoplanetary “transition” disks. In this work, we directly test this hypothesis in the context of current models of grain growth and transport. Methods. A set of dust evolution models with different disk shapes, masses, turbulence parameters, and drift efficiencies is combined with radiative transfer calculations in order to derive theoretical spectral energy distributions (SEDs) and images. Results. We find that grain growth and transport effects can indeed produce dips in the infrared SED, as typically found in observations of transition disks. Our models achieve the necessary reduction of mass in small dust by producing larger grains, yet not large enough to be fragmenting efficiently. However, this population of large grains is still detectable at millimeter wavelengths. Even if perfect sticking is assumed and radial drift is neglected, a large population of dust grains is left behind because the time scales on which they are swept up by the larger grains are too long. This mechanism thus fails to reproduce the large emission cavities observed in recent millimeter-wave interferometric images of accreting transition disks.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201219262</identifier><identifier>CODEN: AAEJAF</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>accretion ; accretion disks ; Astronomy ; circumstellar matter ; Earth, ocean, space ; Exact sciences and technology ; planets and satellites: formation ; protoplanetary disks ; stars: pre-main sequence</subject><ispartof>Astronomy and astrophysics (Berlin), 2012-08, Vol.544, p.A79</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-952d0faf2e1ac35552dd00c0ecc2b369fce9abba09550ce23113052a42d6da043</citedby><cites>FETCH-LOGICAL-c362t-952d0faf2e1ac35552dd00c0ecc2b369fce9abba09550ce23113052a42d6da043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3725,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26454358$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Birnstiel, T.</creatorcontrib><creatorcontrib>Andrews, S. M.</creatorcontrib><creatorcontrib>Ercolano, B.</creatorcontrib><title>Can grain growth explain transition disks?</title><title>Astronomy and astrophysics (Berlin)</title><description>Aims. Grain growth has been suggested as one possible explanation for the diminished dust optical depths in the inner regions of protoplanetary “transition” disks. In this work, we directly test this hypothesis in the context of current models of grain growth and transport. Methods. A set of dust evolution models with different disk shapes, masses, turbulence parameters, and drift efficiencies is combined with radiative transfer calculations in order to derive theoretical spectral energy distributions (SEDs) and images. Results. We find that grain growth and transport effects can indeed produce dips in the infrared SED, as typically found in observations of transition disks. Our models achieve the necessary reduction of mass in small dust by producing larger grains, yet not large enough to be fragmenting efficiently. However, this population of large grains is still detectable at millimeter wavelengths. Even if perfect sticking is assumed and radial drift is neglected, a large population of dust grains is left behind because the time scales on which they are swept up by the larger grains are too long. This mechanism thus fails to reproduce the large emission cavities observed in recent millimeter-wave interferometric images of accreting transition disks.</description><subject>accretion</subject><subject>accretion disks</subject><subject>Astronomy</subject><subject>circumstellar matter</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>planets and satellites: formation</subject><subject>protoplanetary disks</subject><subject>stars: pre-main sequence</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9j0FLAzEQhYMoWKu_wEsvXoS1k5kk7Z5EitsKBUGUgpcwzWY1tnZLsmD99-5S2csMj3lveJ8Q1xLuJGg5BgCVGTJyjCBR5mjwRAykIsxgosypGPSOc3GR0lcrUU5pIG5nvBt9RA7drH-az5E_7LedbCLvUmhCvRuVIW3S_aU4q3ib_NX_Hoq34vF1tsiWz_On2cMyc2SwyXKNJVRcoZfsSOtWlgAOvHO4JpNXzue8XjPkWoPzSFISaGSFpSkZFA0FHf-6WKcUfWX3MXxz_LUSbIdrOxjbwdget03dHFN7To63VdvehdRH0SitSE9bX3b0hdT4Q3_nuLFmQhNtp7Cy78titaDixc7pD768Yu8</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Birnstiel, T.</creator><creator>Andrews, S. M.</creator><creator>Ercolano, B.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120801</creationdate><title>Can grain growth explain transition disks?</title><author>Birnstiel, T. ; Andrews, S. M. ; Ercolano, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-952d0faf2e1ac35552dd00c0ecc2b369fce9abba09550ce23113052a42d6da043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>accretion</topic><topic>accretion disks</topic><topic>Astronomy</topic><topic>circumstellar matter</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>planets and satellites: formation</topic><topic>protoplanetary disks</topic><topic>stars: pre-main sequence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birnstiel, T.</creatorcontrib><creatorcontrib>Andrews, S. M.</creatorcontrib><creatorcontrib>Ercolano, B.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birnstiel, T.</au><au>Andrews, S. M.</au><au>Ercolano, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can grain growth explain transition disks?</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>544</volume><spage>A79</spage><pages>A79-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><coden>AAEJAF</coden><abstract>Aims. Grain growth has been suggested as one possible explanation for the diminished dust optical depths in the inner regions of protoplanetary “transition” disks. In this work, we directly test this hypothesis in the context of current models of grain growth and transport. Methods. A set of dust evolution models with different disk shapes, masses, turbulence parameters, and drift efficiencies is combined with radiative transfer calculations in order to derive theoretical spectral energy distributions (SEDs) and images. Results. We find that grain growth and transport effects can indeed produce dips in the infrared SED, as typically found in observations of transition disks. Our models achieve the necessary reduction of mass in small dust by producing larger grains, yet not large enough to be fragmenting efficiently. However, this population of large grains is still detectable at millimeter wavelengths. Even if perfect sticking is assumed and radial drift is neglected, a large population of dust grains is left behind because the time scales on which they are swept up by the larger grains are too long. This mechanism thus fails to reproduce the large emission cavities observed in recent millimeter-wave interferometric images of accreting transition disks.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201219262</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2012-08, Vol.544, p.A79
issn 0004-6361
1432-0746
language eng
recordid cdi_crossref_primary_10_1051_0004_6361_201219262
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects accretion
accretion disks
Astronomy
circumstellar matter
Earth, ocean, space
Exact sciences and technology
planets and satellites: formation
protoplanetary disks
stars: pre-main sequence
title Can grain growth explain transition disks?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20grain%20growth%20explain%20transition%20disks?&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Birnstiel,%20T.&rft.date=2012-08-01&rft.volume=544&rft.spage=A79&rft.pages=A79-&rft.issn=0004-6361&rft.eissn=1432-0746&rft.coden=AAEJAF&rft_id=info:doi/10.1051/0004-6361/201219262&rft_dat=%3Cistex_cross%3Eark_67375_80W_ZLFWH3FR_G%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true