European VLBI network observations of fourteen GHz-peaked-spectrum radio sources at 5 GHz

We present the results of EVN polarization observations of fourteen GHz-Peaked-Spectrum (GPS) radio sources at 5 GHz. These sources were selected from bright GPS source samples and we aimed at finding Compact Symmetric Objects (CSOs). We have obtained full polarization 5 GHz VLBI observations of 14...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2006-08, Vol.454 (3), p.729-740
Hauptverfasser: Xiang, L., Reynolds, C., Strom, R. G., Dallacasa, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the results of EVN polarization observations of fourteen GHz-Peaked-Spectrum (GPS) radio sources at 5 GHz. These sources were selected from bright GPS source samples and we aimed at finding Compact Symmetric Objects (CSOs). We have obtained full polarization 5 GHz VLBI observations of 14 sources providing information on their source structure and spectral indices. The results show that two core-jet sources 1433-040 and DA193, out of 14 GPS sources, exhibit integrated fractional polarizations of 3.6% and 1.0% respectively. The other 12 sources have no clear detection of pc-scale polarization. The results confirm that the GPS sources generally have very low polarization at 5 GHz. The sources 1133+432, 1824+271 and 2121-014 are confirmed as CSOs. Three new CSOs 0914+114, 1518+046 and 2322-040 (tentative) have been classified on the basis of 5 GHz images and spectral indices. The sources 1333+589, 1751+278 and 2323+790 can be classified either as compact doubles, and then they are likely CSO candidates or core-jet sources; further observations are needed for an appropriate classification; 0554-026, 1433-040 and 1509+054 are core-jet sources. In addition, we estimate that a component in the jet of quasar DA193 has superluminal motion of $3.3\pm0.6\, h^{-1}\,c$ in 5.5 years.
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361:20053885