New classes inference, few‐shot learning and continual learning for radar signal recognition

Automatic radar modulation recognition plays a significant role in both civilian and military applications. With the rapid development of deep learning, convolutional neural networks have achieved demonstrated success in radar signal recognition. However, the convolutional neural networks usually on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET radar, sonar & navigation sonar & navigation, 2022-10, Vol.16 (10), p.1641-1655
Hauptverfasser: Luo, Jiaji, Si, Weijian, Deng, Zhian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1655
container_issue 10
container_start_page 1641
container_title IET radar, sonar & navigation
container_volume 16
creator Luo, Jiaji
Si, Weijian
Deng, Zhian
description Automatic radar modulation recognition plays a significant role in both civilian and military applications. With the rapid development of deep learning, convolutional neural networks have achieved demonstrated success in radar signal recognition. However, the convolutional neural networks usually only recognise trained classes, and when the dataset changes, the networks need to be retrained. However, in actual radar signal recognition applications, the model usually needs to predict new radar signals, and the size of the training set will continue to accumulate. Therefore, few‐shot learning and rapid training on dynamic datasets become crucial. In this study, a lifelong learning system based on imprint few‐shot learning and Net2Net knowledge transfer for radar signal recognition is proposed. The proposed algorithm adapts to the constant changes of the dataset, which can achieve new classes inference, few‐shot learning, and knowledge transfer. The model is trained on the dataset containing 8 types of radar signals and achieves high recognition accuracy in the test dataset containing 12 types of radar signals. The recognition accuracy of the proposed algorithm achieves 91.8% at −2 dB. In addition, Net2Net knowledge transfer can improve the training efficiency on new datasets avoiding training from scratch.
doi_str_mv 10.1049/rsn2.12286
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1049_rsn2_12286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>RSN212286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3096-5c7f42ba9b612598c52aa9cc67a050342c9accef8a96a25bacccc1f4541f47573</originalsourceid><addsrcrecordid>eNp9kEtOwzAQQC0EEqWw4QReI1Jsx07iJaqgIFVF4rMlmkztYBQcZAdF3XEEzshJSAmCHZv5vpnFI-SYsxlnUp-F6MWMC1FkO2TCc8WTItdi97cu5D45iPGZMaUyqSfkcWV6ig3EaCJ13ppgPJpTak3_-f4Rn9qONgaCd76m4NcUW985_wbN39i2gQZYQ6DR1X7YBINt7V3nWn9I9iw00Rz95Cl5uLy4n18ly5vF9fx8mWDKdJYozK0UFegq40LpApUA0IhZDkyxVArUgGhsAToDoaqhQeRWKjmEXOXplJyMfzG0MQZjy9fgXiBsSs7KrZlya6b8NjPAfIR715jNP2R5e7cS480XkV9o5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New classes inference, few‐shot learning and continual learning for radar signal recognition</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Luo, Jiaji ; Si, Weijian ; Deng, Zhian</creator><creatorcontrib>Luo, Jiaji ; Si, Weijian ; Deng, Zhian</creatorcontrib><description>Automatic radar modulation recognition plays a significant role in both civilian and military applications. With the rapid development of deep learning, convolutional neural networks have achieved demonstrated success in radar signal recognition. However, the convolutional neural networks usually only recognise trained classes, and when the dataset changes, the networks need to be retrained. However, in actual radar signal recognition applications, the model usually needs to predict new radar signals, and the size of the training set will continue to accumulate. Therefore, few‐shot learning and rapid training on dynamic datasets become crucial. In this study, a lifelong learning system based on imprint few‐shot learning and Net2Net knowledge transfer for radar signal recognition is proposed. The proposed algorithm adapts to the constant changes of the dataset, which can achieve new classes inference, few‐shot learning, and knowledge transfer. The model is trained on the dataset containing 8 types of radar signals and achieves high recognition accuracy in the test dataset containing 12 types of radar signals. The recognition accuracy of the proposed algorithm achieves 91.8% at −2 dB. In addition, Net2Net knowledge transfer can improve the training efficiency on new datasets avoiding training from scratch.</description><identifier>ISSN: 1751-8784</identifier><identifier>EISSN: 1751-8792</identifier><identifier>DOI: 10.1049/rsn2.12286</identifier><language>eng</language><subject>continual learning ; few‐shot learning ; knowledge transfer ; radar signal recognition</subject><ispartof>IET radar, sonar &amp; navigation, 2022-10, Vol.16 (10), p.1641-1655</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd on behalf of The Institution of Engineering and Technology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3096-5c7f42ba9b612598c52aa9cc67a050342c9accef8a96a25bacccc1f4541f47573</citedby><cites>FETCH-LOGICAL-c3096-5c7f42ba9b612598c52aa9cc67a050342c9accef8a96a25bacccc1f4541f47573</cites><orcidid>0000-0002-3782-8333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Frsn2.12286$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Frsn2.12286$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1416,11560,27922,27923,45572,45573,46050,46474</link.rule.ids></links><search><creatorcontrib>Luo, Jiaji</creatorcontrib><creatorcontrib>Si, Weijian</creatorcontrib><creatorcontrib>Deng, Zhian</creatorcontrib><title>New classes inference, few‐shot learning and continual learning for radar signal recognition</title><title>IET radar, sonar &amp; navigation</title><description>Automatic radar modulation recognition plays a significant role in both civilian and military applications. With the rapid development of deep learning, convolutional neural networks have achieved demonstrated success in radar signal recognition. However, the convolutional neural networks usually only recognise trained classes, and when the dataset changes, the networks need to be retrained. However, in actual radar signal recognition applications, the model usually needs to predict new radar signals, and the size of the training set will continue to accumulate. Therefore, few‐shot learning and rapid training on dynamic datasets become crucial. In this study, a lifelong learning system based on imprint few‐shot learning and Net2Net knowledge transfer for radar signal recognition is proposed. The proposed algorithm adapts to the constant changes of the dataset, which can achieve new classes inference, few‐shot learning, and knowledge transfer. The model is trained on the dataset containing 8 types of radar signals and achieves high recognition accuracy in the test dataset containing 12 types of radar signals. The recognition accuracy of the proposed algorithm achieves 91.8% at −2 dB. In addition, Net2Net knowledge transfer can improve the training efficiency on new datasets avoiding training from scratch.</description><subject>continual learning</subject><subject>few‐shot learning</subject><subject>knowledge transfer</subject><subject>radar signal recognition</subject><issn>1751-8784</issn><issn>1751-8792</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kEtOwzAQQC0EEqWw4QReI1Jsx07iJaqgIFVF4rMlmkztYBQcZAdF3XEEzshJSAmCHZv5vpnFI-SYsxlnUp-F6MWMC1FkO2TCc8WTItdi97cu5D45iPGZMaUyqSfkcWV6ig3EaCJ13ppgPJpTak3_-f4Rn9qONgaCd76m4NcUW985_wbN39i2gQZYQ6DR1X7YBINt7V3nWn9I9iw00Rz95Cl5uLy4n18ly5vF9fx8mWDKdJYozK0UFegq40LpApUA0IhZDkyxVArUgGhsAToDoaqhQeRWKjmEXOXplJyMfzG0MQZjy9fgXiBsSs7KrZlya6b8NjPAfIR715jNP2R5e7cS480XkV9o5w</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Luo, Jiaji</creator><creator>Si, Weijian</creator><creator>Deng, Zhian</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3782-8333</orcidid></search><sort><creationdate>202210</creationdate><title>New classes inference, few‐shot learning and continual learning for radar signal recognition</title><author>Luo, Jiaji ; Si, Weijian ; Deng, Zhian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3096-5c7f42ba9b612598c52aa9cc67a050342c9accef8a96a25bacccc1f4541f47573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>continual learning</topic><topic>few‐shot learning</topic><topic>knowledge transfer</topic><topic>radar signal recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Jiaji</creatorcontrib><creatorcontrib>Si, Weijian</creatorcontrib><creatorcontrib>Deng, Zhian</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>IET radar, sonar &amp; navigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Jiaji</au><au>Si, Weijian</au><au>Deng, Zhian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New classes inference, few‐shot learning and continual learning for radar signal recognition</atitle><jtitle>IET radar, sonar &amp; navigation</jtitle><date>2022-10</date><risdate>2022</risdate><volume>16</volume><issue>10</issue><spage>1641</spage><epage>1655</epage><pages>1641-1655</pages><issn>1751-8784</issn><eissn>1751-8792</eissn><abstract>Automatic radar modulation recognition plays a significant role in both civilian and military applications. With the rapid development of deep learning, convolutional neural networks have achieved demonstrated success in radar signal recognition. However, the convolutional neural networks usually only recognise trained classes, and when the dataset changes, the networks need to be retrained. However, in actual radar signal recognition applications, the model usually needs to predict new radar signals, and the size of the training set will continue to accumulate. Therefore, few‐shot learning and rapid training on dynamic datasets become crucial. In this study, a lifelong learning system based on imprint few‐shot learning and Net2Net knowledge transfer for radar signal recognition is proposed. The proposed algorithm adapts to the constant changes of the dataset, which can achieve new classes inference, few‐shot learning, and knowledge transfer. The model is trained on the dataset containing 8 types of radar signals and achieves high recognition accuracy in the test dataset containing 12 types of radar signals. The recognition accuracy of the proposed algorithm achieves 91.8% at −2 dB. In addition, Net2Net knowledge transfer can improve the training efficiency on new datasets avoiding training from scratch.</abstract><doi>10.1049/rsn2.12286</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3782-8333</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8784
ispartof IET radar, sonar & navigation, 2022-10, Vol.16 (10), p.1641-1655
issn 1751-8784
1751-8792
language eng
recordid cdi_crossref_primary_10_1049_rsn2_12286
source DOAJ Directory of Open Access Journals; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects continual learning
few‐shot learning
knowledge transfer
radar signal recognition
title New classes inference, few‐shot learning and continual learning for radar signal recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A30%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20classes%20inference,%20few%E2%80%90shot%20learning%20and%20continual%20learning%20for%20radar%20signal%20recognition&rft.jtitle=IET%20radar,%20sonar%20&%20navigation&rft.au=Luo,%20Jiaji&rft.date=2022-10&rft.volume=16&rft.issue=10&rft.spage=1641&rft.epage=1655&rft.pages=1641-1655&rft.issn=1751-8784&rft.eissn=1751-8792&rft_id=info:doi/10.1049/rsn2.12286&rft_dat=%3Cwiley_cross%3ERSN212286%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true