Biosynthesis of silver nanoparticles using upland cress: purification, characterisation, and antimicrobial activity
Silver nanoparticles have traditionally been synthesised using physical and chemical methods, often requiring expensive equipment and reagents that pose risks to the environment. This work provides a green method for the biosynthesis of silver nanoparticles using leaf extracts from upland cress: Bar...
Gespeichert in:
Veröffentlicht in: | Micro & nano letters 2020-02, Vol.15 (2), p.110-113 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113 |
---|---|
container_issue | 2 |
container_start_page | 110 |
container_title | Micro & nano letters |
container_volume | 15 |
creator | Johnson, David L Wang, Yale Stealey, Samuel T Alexander, Anne K Kaltchev, Matey G Chen, Junhong Zhang, Wujie |
description | Silver nanoparticles have traditionally been synthesised using physical and chemical methods, often requiring expensive equipment and reagents that pose risks to the environment. This work provides a green method for the biosynthesis of silver nanoparticles using leaf extracts from upland cress: Barbarea verna. Natural reducing agents within the leaf extracts of upland cress reduce silver ions from silver nitrates, resulting in the formation of silver nanoparticles. The silver nanoparticles were purified using centrifugation and extraction using Triton X-114. The resulting nanoparticles were characterised using UV–Vis spectroscopy, dynamic light scattering, atomic force microscopy, and scanning electron microscopy. Silver nanoparticles were shown to have a diameter of 30–40 nm with a characteristic UV–Vis absorption peak at 420 nm. Antimicrobial properties of the synthesised silver nanoparticles were also confirmed using S. epidermis and E. coli bacteria. |
doi_str_mv | 10.1049/mnl.2019.0528 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1049_mnl_2019_0528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350105827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4150-ad6adc18148cfcbaa29afec5d8d7102c3e6eb6f0f44589d8e01d1288c80d4f4f3</originalsourceid><addsrcrecordid>eNqNkM1v1DAQxSMEEqVw5G4JcUCw27HjJA63dtUC0rZc4Gx5_UGnytrBdor2v6_DrtAeAPXkkef3Zt68qnpNYUmB92dbPywZ0H4JDRNPqhPaNbAAzuunR_Xz6kVKdwC8Y11_UqULDGnn861NmEhwJOFwbyPxyodRxYx6sIlMCf0PMo2D8oboaFP6SMYpokOtMgb_gehbFZXONmI6_Myo8hm3qGPYoBpI6eM95t3L6plTQ7KvDu9p9f3q8tvq82L99dOX1fl6oTktbpVpldFUUC600xulWK-c1Y0RpqPAdG1bu2kdOM4b0RthgRrKhNACDHfc1afVm_3cMYafk01Z3oUp-rJSsroBCo1gXaEWe6rYTClaJ8eIWxV3koKcc5UlVznnKudcC_9-z_-ym-CSRuu1_aMBgKa4p21TKgqFFo-nV5h_h7cKk89F2h6kONjd_13J65tzdnEFtKvnne_2QrRHJ__rmrd_Ya9v1kezR-PqBwg8uTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350105827</pqid></control><display><type>article</type><title>Biosynthesis of silver nanoparticles using upland cress: purification, characterisation, and antimicrobial activity</title><source>Wiley Online Library (Open Access Collection)</source><creator>Johnson, David L ; Wang, Yale ; Stealey, Samuel T ; Alexander, Anne K ; Kaltchev, Matey G ; Chen, Junhong ; Zhang, Wujie</creator><creatorcontrib>Johnson, David L ; Wang, Yale ; Stealey, Samuel T ; Alexander, Anne K ; Kaltchev, Matey G ; Chen, Junhong ; Zhang, Wujie</creatorcontrib><description>Silver nanoparticles have traditionally been synthesised using physical and chemical methods, often requiring expensive equipment and reagents that pose risks to the environment. This work provides a green method for the biosynthesis of silver nanoparticles using leaf extracts from upland cress: Barbarea verna. Natural reducing agents within the leaf extracts of upland cress reduce silver ions from silver nitrates, resulting in the formation of silver nanoparticles. The silver nanoparticles were purified using centrifugation and extraction using Triton X-114. The resulting nanoparticles were characterised using UV–Vis spectroscopy, dynamic light scattering, atomic force microscopy, and scanning electron microscopy. Silver nanoparticles were shown to have a diameter of 30–40 nm with a characteristic UV–Vis absorption peak at 420 nm. Antimicrobial properties of the synthesised silver nanoparticles were also confirmed using S. epidermis and E. coli bacteria.</description><identifier>ISSN: 1750-0443</identifier><identifier>EISSN: 1750-0443</identifier><identifier>DOI: 10.1049/mnl.2019.0528</identifier><language>eng</language><publisher>HOBOKEN: The Institution of Engineering and Technology</publisher><subject>antibacterial activity ; Antiinfectives and antibacterials ; antimicrobial activity ; Antimicrobial agents ; antimicrobial properties ; Atomic force microscopy ; Barbarea verna ; Biosynthesis ; biotechnology ; chemical method ; Chemical synthesis ; dynamic light scattering ; E coli ; E. coli bacteria ; Epidermis ; light scattering ; Materials Science ; Materials Science, Multidisciplinary ; microorganisms ; Microscopy ; nanofabrication ; nanomedicine ; Nanoparticles ; Nanoscience & Nanotechnology ; Organic chemistry ; Photon correlation spectroscopy ; physical method ; Reagents ; Reducing agents ; S. epidermis ; scanning electron microscopy ; Science & Technology ; Science & Technology - Other Topics ; Silver ; silver nanoparticles ; Silver nitrate ; silver nitrates ; size 30.0 nm to 40.0 nm ; Technology ; Triton X‐114 ; ultraviolet spectra ; upland cress ; UV–Vis absorption peak ; UV–vis spectroscopy ; visible spectra ; wavelength 420.0 nm</subject><ispartof>Micro & nano letters, 2020-02, Vol.15 (2), p.110-113</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><rights>Copyright The Institution of Engineering & Technology Feb 5, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000541516500010</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4150-ad6adc18148cfcbaa29afec5d8d7102c3e6eb6f0f44589d8e01d1288c80d4f4f3</citedby><cites>FETCH-LOGICAL-c4150-ad6adc18148cfcbaa29afec5d8d7102c3e6eb6f0f44589d8e01d1288c80d4f4f3</cites><orcidid>0000-0003-4296-1945 ; 0000-0001-8759-3408 ; 0000-0001-6355-4551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fmnl.2019.0528$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fmnl.2019.0528$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,11567,27929,27930,28253,45579,45580,46057,46481</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fmnl.2019.0528$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Johnson, David L</creatorcontrib><creatorcontrib>Wang, Yale</creatorcontrib><creatorcontrib>Stealey, Samuel T</creatorcontrib><creatorcontrib>Alexander, Anne K</creatorcontrib><creatorcontrib>Kaltchev, Matey G</creatorcontrib><creatorcontrib>Chen, Junhong</creatorcontrib><creatorcontrib>Zhang, Wujie</creatorcontrib><title>Biosynthesis of silver nanoparticles using upland cress: purification, characterisation, and antimicrobial activity</title><title>Micro & nano letters</title><addtitle>MICRO NANO LETT</addtitle><description>Silver nanoparticles have traditionally been synthesised using physical and chemical methods, often requiring expensive equipment and reagents that pose risks to the environment. This work provides a green method for the biosynthesis of silver nanoparticles using leaf extracts from upland cress: Barbarea verna. Natural reducing agents within the leaf extracts of upland cress reduce silver ions from silver nitrates, resulting in the formation of silver nanoparticles. The silver nanoparticles were purified using centrifugation and extraction using Triton X-114. The resulting nanoparticles were characterised using UV–Vis spectroscopy, dynamic light scattering, atomic force microscopy, and scanning electron microscopy. Silver nanoparticles were shown to have a diameter of 30–40 nm with a characteristic UV–Vis absorption peak at 420 nm. Antimicrobial properties of the synthesised silver nanoparticles were also confirmed using S. epidermis and E. coli bacteria.</description><subject>antibacterial activity</subject><subject>Antiinfectives and antibacterials</subject><subject>antimicrobial activity</subject><subject>Antimicrobial agents</subject><subject>antimicrobial properties</subject><subject>Atomic force microscopy</subject><subject>Barbarea verna</subject><subject>Biosynthesis</subject><subject>biotechnology</subject><subject>chemical method</subject><subject>Chemical synthesis</subject><subject>dynamic light scattering</subject><subject>E coli</subject><subject>E. coli bacteria</subject><subject>Epidermis</subject><subject>light scattering</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>microorganisms</subject><subject>Microscopy</subject><subject>nanofabrication</subject><subject>nanomedicine</subject><subject>Nanoparticles</subject><subject>Nanoscience & Nanotechnology</subject><subject>Organic chemistry</subject><subject>Photon correlation spectroscopy</subject><subject>physical method</subject><subject>Reagents</subject><subject>Reducing agents</subject><subject>S. epidermis</subject><subject>scanning electron microscopy</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Silver</subject><subject>silver nanoparticles</subject><subject>Silver nitrate</subject><subject>silver nitrates</subject><subject>size 30.0 nm to 40.0 nm</subject><subject>Technology</subject><subject>Triton X‐114</subject><subject>ultraviolet spectra</subject><subject>upland cress</subject><subject>UV–Vis absorption peak</subject><subject>UV–vis spectroscopy</subject><subject>visible spectra</subject><subject>wavelength 420.0 nm</subject><issn>1750-0443</issn><issn>1750-0443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkM1v1DAQxSMEEqVw5G4JcUCw27HjJA63dtUC0rZc4Gx5_UGnytrBdor2v6_DrtAeAPXkkef3Zt68qnpNYUmB92dbPywZ0H4JDRNPqhPaNbAAzuunR_Xz6kVKdwC8Y11_UqULDGnn861NmEhwJOFwbyPxyodRxYx6sIlMCf0PMo2D8oboaFP6SMYpokOtMgb_gehbFZXONmI6_Myo8hm3qGPYoBpI6eM95t3L6plTQ7KvDu9p9f3q8tvq82L99dOX1fl6oTktbpVpldFUUC600xulWK-c1Y0RpqPAdG1bu2kdOM4b0RthgRrKhNACDHfc1afVm_3cMYafk01Z3oUp-rJSsroBCo1gXaEWe6rYTClaJ8eIWxV3koKcc5UlVznnKudcC_9-z_-ym-CSRuu1_aMBgKa4p21TKgqFFo-nV5h_h7cKk89F2h6kONjd_13J65tzdnEFtKvnne_2QrRHJ__rmrd_Ya9v1kezR-PqBwg8uTk</recordid><startdate>20200205</startdate><enddate>20200205</enddate><creator>Johnson, David L</creator><creator>Wang, Yale</creator><creator>Stealey, Samuel T</creator><creator>Alexander, Anne K</creator><creator>Kaltchev, Matey G</creator><creator>Chen, Junhong</creator><creator>Zhang, Wujie</creator><general>The Institution of Engineering and Technology</general><general>Wiley</general><general>John Wiley & Sons, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4296-1945</orcidid><orcidid>https://orcid.org/0000-0001-8759-3408</orcidid><orcidid>https://orcid.org/0000-0001-6355-4551</orcidid></search><sort><creationdate>20200205</creationdate><title>Biosynthesis of silver nanoparticles using upland cress: purification, characterisation, and antimicrobial activity</title><author>Johnson, David L ; Wang, Yale ; Stealey, Samuel T ; Alexander, Anne K ; Kaltchev, Matey G ; Chen, Junhong ; Zhang, Wujie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4150-ad6adc18148cfcbaa29afec5d8d7102c3e6eb6f0f44589d8e01d1288c80d4f4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>antibacterial activity</topic><topic>Antiinfectives and antibacterials</topic><topic>antimicrobial activity</topic><topic>Antimicrobial agents</topic><topic>antimicrobial properties</topic><topic>Atomic force microscopy</topic><topic>Barbarea verna</topic><topic>Biosynthesis</topic><topic>biotechnology</topic><topic>chemical method</topic><topic>Chemical synthesis</topic><topic>dynamic light scattering</topic><topic>E coli</topic><topic>E. coli bacteria</topic><topic>Epidermis</topic><topic>light scattering</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>microorganisms</topic><topic>Microscopy</topic><topic>nanofabrication</topic><topic>nanomedicine</topic><topic>Nanoparticles</topic><topic>Nanoscience & Nanotechnology</topic><topic>Organic chemistry</topic><topic>Photon correlation spectroscopy</topic><topic>physical method</topic><topic>Reagents</topic><topic>Reducing agents</topic><topic>S. epidermis</topic><topic>scanning electron microscopy</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Silver</topic><topic>silver nanoparticles</topic><topic>Silver nitrate</topic><topic>silver nitrates</topic><topic>size 30.0 nm to 40.0 nm</topic><topic>Technology</topic><topic>Triton X‐114</topic><topic>ultraviolet spectra</topic><topic>upland cress</topic><topic>UV–Vis absorption peak</topic><topic>UV–vis spectroscopy</topic><topic>visible spectra</topic><topic>wavelength 420.0 nm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, David L</creatorcontrib><creatorcontrib>Wang, Yale</creatorcontrib><creatorcontrib>Stealey, Samuel T</creatorcontrib><creatorcontrib>Alexander, Anne K</creatorcontrib><creatorcontrib>Kaltchev, Matey G</creatorcontrib><creatorcontrib>Chen, Junhong</creatorcontrib><creatorcontrib>Zhang, Wujie</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Micro & nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Johnson, David L</au><au>Wang, Yale</au><au>Stealey, Samuel T</au><au>Alexander, Anne K</au><au>Kaltchev, Matey G</au><au>Chen, Junhong</au><au>Zhang, Wujie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biosynthesis of silver nanoparticles using upland cress: purification, characterisation, and antimicrobial activity</atitle><jtitle>Micro & nano letters</jtitle><stitle>MICRO NANO LETT</stitle><date>2020-02-05</date><risdate>2020</risdate><volume>15</volume><issue>2</issue><spage>110</spage><epage>113</epage><pages>110-113</pages><issn>1750-0443</issn><eissn>1750-0443</eissn><abstract>Silver nanoparticles have traditionally been synthesised using physical and chemical methods, often requiring expensive equipment and reagents that pose risks to the environment. This work provides a green method for the biosynthesis of silver nanoparticles using leaf extracts from upland cress: Barbarea verna. Natural reducing agents within the leaf extracts of upland cress reduce silver ions from silver nitrates, resulting in the formation of silver nanoparticles. The silver nanoparticles were purified using centrifugation and extraction using Triton X-114. The resulting nanoparticles were characterised using UV–Vis spectroscopy, dynamic light scattering, atomic force microscopy, and scanning electron microscopy. Silver nanoparticles were shown to have a diameter of 30–40 nm with a characteristic UV–Vis absorption peak at 420 nm. Antimicrobial properties of the synthesised silver nanoparticles were also confirmed using S. epidermis and E. coli bacteria.</abstract><cop>HOBOKEN</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/mnl.2019.0528</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-4296-1945</orcidid><orcidid>https://orcid.org/0000-0001-8759-3408</orcidid><orcidid>https://orcid.org/0000-0001-6355-4551</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1750-0443 |
ispartof | Micro & nano letters, 2020-02, Vol.15 (2), p.110-113 |
issn | 1750-0443 1750-0443 |
language | eng |
recordid | cdi_crossref_primary_10_1049_mnl_2019_0528 |
source | Wiley Online Library (Open Access Collection) |
subjects | antibacterial activity Antiinfectives and antibacterials antimicrobial activity Antimicrobial agents antimicrobial properties Atomic force microscopy Barbarea verna Biosynthesis biotechnology chemical method Chemical synthesis dynamic light scattering E coli E. coli bacteria Epidermis light scattering Materials Science Materials Science, Multidisciplinary microorganisms Microscopy nanofabrication nanomedicine Nanoparticles Nanoscience & Nanotechnology Organic chemistry Photon correlation spectroscopy physical method Reagents Reducing agents S. epidermis scanning electron microscopy Science & Technology Science & Technology - Other Topics Silver silver nanoparticles Silver nitrate silver nitrates size 30.0 nm to 40.0 nm Technology Triton X‐114 ultraviolet spectra upland cress UV–Vis absorption peak UV–vis spectroscopy visible spectra wavelength 420.0 nm |
title | Biosynthesis of silver nanoparticles using upland cress: purification, characterisation, and antimicrobial activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biosynthesis%20of%20silver%20nanoparticles%20using%20upland%20cress:%20purification,%20characterisation,%20and%20antimicrobial%20activity&rft.jtitle=Micro%20&%20nano%20letters&rft.au=Johnson,%20David%20L&rft.date=2020-02-05&rft.volume=15&rft.issue=2&rft.spage=110&rft.epage=113&rft.pages=110-113&rft.issn=1750-0443&rft.eissn=1750-0443&rft_id=info:doi/10.1049/mnl.2019.0528&rft_dat=%3Cproquest_24P%3E2350105827%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350105827&rft_id=info:pmid/&rfr_iscdi=true |