Biosynthesis of silver nanoparticles using upland cress: purification, characterisation, and antimicrobial activity

Silver nanoparticles have traditionally been synthesised using physical and chemical methods, often requiring expensive equipment and reagents that pose risks to the environment. This work provides a green method for the biosynthesis of silver nanoparticles using leaf extracts from upland cress: Bar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micro & nano letters 2020-02, Vol.15 (2), p.110-113
Hauptverfasser: Johnson, David L, Wang, Yale, Stealey, Samuel T, Alexander, Anne K, Kaltchev, Matey G, Chen, Junhong, Zhang, Wujie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 2
container_start_page 110
container_title Micro & nano letters
container_volume 15
creator Johnson, David L
Wang, Yale
Stealey, Samuel T
Alexander, Anne K
Kaltchev, Matey G
Chen, Junhong
Zhang, Wujie
description Silver nanoparticles have traditionally been synthesised using physical and chemical methods, often requiring expensive equipment and reagents that pose risks to the environment. This work provides a green method for the biosynthesis of silver nanoparticles using leaf extracts from upland cress: Barbarea verna. Natural reducing agents within the leaf extracts of upland cress reduce silver ions from silver nitrates, resulting in the formation of silver nanoparticles. The silver nanoparticles were purified using centrifugation and extraction using Triton X-114. The resulting nanoparticles were characterised using UV–Vis spectroscopy, dynamic light scattering, atomic force microscopy, and scanning electron microscopy. Silver nanoparticles were shown to have a diameter of 30–40 nm with a characteristic UV–Vis absorption peak at 420 nm. Antimicrobial properties of the synthesised silver nanoparticles were also confirmed using S. epidermis and E. coli bacteria.
doi_str_mv 10.1049/mnl.2019.0528
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1049_mnl_2019_0528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350105827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4150-ad6adc18148cfcbaa29afec5d8d7102c3e6eb6f0f44589d8e01d1288c80d4f4f3</originalsourceid><addsrcrecordid>eNqNkM1v1DAQxSMEEqVw5G4JcUCw27HjJA63dtUC0rZc4Gx5_UGnytrBdor2v6_DrtAeAPXkkef3Zt68qnpNYUmB92dbPywZ0H4JDRNPqhPaNbAAzuunR_Xz6kVKdwC8Y11_UqULDGnn861NmEhwJOFwbyPxyodRxYx6sIlMCf0PMo2D8oboaFP6SMYpokOtMgb_gehbFZXONmI6_Myo8hm3qGPYoBpI6eM95t3L6plTQ7KvDu9p9f3q8tvq82L99dOX1fl6oTktbpVpldFUUC600xulWK-c1Y0RpqPAdG1bu2kdOM4b0RthgRrKhNACDHfc1afVm_3cMYafk01Z3oUp-rJSsroBCo1gXaEWe6rYTClaJ8eIWxV3koKcc5UlVznnKudcC_9-z_-ym-CSRuu1_aMBgKa4p21TKgqFFo-nV5h_h7cKk89F2h6kONjd_13J65tzdnEFtKvnne_2QrRHJ__rmrd_Ya9v1kezR-PqBwg8uTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350105827</pqid></control><display><type>article</type><title>Biosynthesis of silver nanoparticles using upland cress: purification, characterisation, and antimicrobial activity</title><source>Wiley Online Library (Open Access Collection)</source><creator>Johnson, David L ; Wang, Yale ; Stealey, Samuel T ; Alexander, Anne K ; Kaltchev, Matey G ; Chen, Junhong ; Zhang, Wujie</creator><creatorcontrib>Johnson, David L ; Wang, Yale ; Stealey, Samuel T ; Alexander, Anne K ; Kaltchev, Matey G ; Chen, Junhong ; Zhang, Wujie</creatorcontrib><description>Silver nanoparticles have traditionally been synthesised using physical and chemical methods, often requiring expensive equipment and reagents that pose risks to the environment. This work provides a green method for the biosynthesis of silver nanoparticles using leaf extracts from upland cress: Barbarea verna. Natural reducing agents within the leaf extracts of upland cress reduce silver ions from silver nitrates, resulting in the formation of silver nanoparticles. The silver nanoparticles were purified using centrifugation and extraction using Triton X-114. The resulting nanoparticles were characterised using UV–Vis spectroscopy, dynamic light scattering, atomic force microscopy, and scanning electron microscopy. Silver nanoparticles were shown to have a diameter of 30–40 nm with a characteristic UV–Vis absorption peak at 420 nm. Antimicrobial properties of the synthesised silver nanoparticles were also confirmed using S. epidermis and E. coli bacteria.</description><identifier>ISSN: 1750-0443</identifier><identifier>EISSN: 1750-0443</identifier><identifier>DOI: 10.1049/mnl.2019.0528</identifier><language>eng</language><publisher>HOBOKEN: The Institution of Engineering and Technology</publisher><subject>antibacterial activity ; Antiinfectives and antibacterials ; antimicrobial activity ; Antimicrobial agents ; antimicrobial properties ; Atomic force microscopy ; Barbarea verna ; Biosynthesis ; biotechnology ; chemical method ; Chemical synthesis ; dynamic light scattering ; E coli ; E. coli bacteria ; Epidermis ; light scattering ; Materials Science ; Materials Science, Multidisciplinary ; microorganisms ; Microscopy ; nanofabrication ; nanomedicine ; Nanoparticles ; Nanoscience &amp; Nanotechnology ; Organic chemistry ; Photon correlation spectroscopy ; physical method ; Reagents ; Reducing agents ; S. epidermis ; scanning electron microscopy ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Silver ; silver nanoparticles ; Silver nitrate ; silver nitrates ; size 30.0 nm to 40.0 nm ; Technology ; Triton X‐114 ; ultraviolet spectra ; upland cress ; UV–Vis absorption peak ; UV–vis spectroscopy ; visible spectra ; wavelength 420.0 nm</subject><ispartof>Micro &amp; nano letters, 2020-02, Vol.15 (2), p.110-113</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><rights>Copyright The Institution of Engineering &amp; Technology Feb 5, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000541516500010</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c4150-ad6adc18148cfcbaa29afec5d8d7102c3e6eb6f0f44589d8e01d1288c80d4f4f3</citedby><cites>FETCH-LOGICAL-c4150-ad6adc18148cfcbaa29afec5d8d7102c3e6eb6f0f44589d8e01d1288c80d4f4f3</cites><orcidid>0000-0003-4296-1945 ; 0000-0001-8759-3408 ; 0000-0001-6355-4551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fmnl.2019.0528$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fmnl.2019.0528$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,11567,27929,27930,28253,45579,45580,46057,46481</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fmnl.2019.0528$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Johnson, David L</creatorcontrib><creatorcontrib>Wang, Yale</creatorcontrib><creatorcontrib>Stealey, Samuel T</creatorcontrib><creatorcontrib>Alexander, Anne K</creatorcontrib><creatorcontrib>Kaltchev, Matey G</creatorcontrib><creatorcontrib>Chen, Junhong</creatorcontrib><creatorcontrib>Zhang, Wujie</creatorcontrib><title>Biosynthesis of silver nanoparticles using upland cress: purification, characterisation, and antimicrobial activity</title><title>Micro &amp; nano letters</title><addtitle>MICRO NANO LETT</addtitle><description>Silver nanoparticles have traditionally been synthesised using physical and chemical methods, often requiring expensive equipment and reagents that pose risks to the environment. This work provides a green method for the biosynthesis of silver nanoparticles using leaf extracts from upland cress: Barbarea verna. Natural reducing agents within the leaf extracts of upland cress reduce silver ions from silver nitrates, resulting in the formation of silver nanoparticles. The silver nanoparticles were purified using centrifugation and extraction using Triton X-114. The resulting nanoparticles were characterised using UV–Vis spectroscopy, dynamic light scattering, atomic force microscopy, and scanning electron microscopy. Silver nanoparticles were shown to have a diameter of 30–40 nm with a characteristic UV–Vis absorption peak at 420 nm. Antimicrobial properties of the synthesised silver nanoparticles were also confirmed using S. epidermis and E. coli bacteria.</description><subject>antibacterial activity</subject><subject>Antiinfectives and antibacterials</subject><subject>antimicrobial activity</subject><subject>Antimicrobial agents</subject><subject>antimicrobial properties</subject><subject>Atomic force microscopy</subject><subject>Barbarea verna</subject><subject>Biosynthesis</subject><subject>biotechnology</subject><subject>chemical method</subject><subject>Chemical synthesis</subject><subject>dynamic light scattering</subject><subject>E coli</subject><subject>E. coli bacteria</subject><subject>Epidermis</subject><subject>light scattering</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>microorganisms</subject><subject>Microscopy</subject><subject>nanofabrication</subject><subject>nanomedicine</subject><subject>Nanoparticles</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Organic chemistry</subject><subject>Photon correlation spectroscopy</subject><subject>physical method</subject><subject>Reagents</subject><subject>Reducing agents</subject><subject>S. epidermis</subject><subject>scanning electron microscopy</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Silver</subject><subject>silver nanoparticles</subject><subject>Silver nitrate</subject><subject>silver nitrates</subject><subject>size 30.0 nm to 40.0 nm</subject><subject>Technology</subject><subject>Triton X‐114</subject><subject>ultraviolet spectra</subject><subject>upland cress</subject><subject>UV–Vis absorption peak</subject><subject>UV–vis spectroscopy</subject><subject>visible spectra</subject><subject>wavelength 420.0 nm</subject><issn>1750-0443</issn><issn>1750-0443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkM1v1DAQxSMEEqVw5G4JcUCw27HjJA63dtUC0rZc4Gx5_UGnytrBdor2v6_DrtAeAPXkkef3Zt68qnpNYUmB92dbPywZ0H4JDRNPqhPaNbAAzuunR_Xz6kVKdwC8Y11_UqULDGnn861NmEhwJOFwbyPxyodRxYx6sIlMCf0PMo2D8oboaFP6SMYpokOtMgb_gehbFZXONmI6_Myo8hm3qGPYoBpI6eM95t3L6plTQ7KvDu9p9f3q8tvq82L99dOX1fl6oTktbpVpldFUUC600xulWK-c1Y0RpqPAdG1bu2kdOM4b0RthgRrKhNACDHfc1afVm_3cMYafk01Z3oUp-rJSsroBCo1gXaEWe6rYTClaJ8eIWxV3koKcc5UlVznnKudcC_9-z_-ym-CSRuu1_aMBgKa4p21TKgqFFo-nV5h_h7cKk89F2h6kONjd_13J65tzdnEFtKvnne_2QrRHJ__rmrd_Ya9v1kezR-PqBwg8uTk</recordid><startdate>20200205</startdate><enddate>20200205</enddate><creator>Johnson, David L</creator><creator>Wang, Yale</creator><creator>Stealey, Samuel T</creator><creator>Alexander, Anne K</creator><creator>Kaltchev, Matey G</creator><creator>Chen, Junhong</creator><creator>Zhang, Wujie</creator><general>The Institution of Engineering and Technology</general><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4296-1945</orcidid><orcidid>https://orcid.org/0000-0001-8759-3408</orcidid><orcidid>https://orcid.org/0000-0001-6355-4551</orcidid></search><sort><creationdate>20200205</creationdate><title>Biosynthesis of silver nanoparticles using upland cress: purification, characterisation, and antimicrobial activity</title><author>Johnson, David L ; Wang, Yale ; Stealey, Samuel T ; Alexander, Anne K ; Kaltchev, Matey G ; Chen, Junhong ; Zhang, Wujie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4150-ad6adc18148cfcbaa29afec5d8d7102c3e6eb6f0f44589d8e01d1288c80d4f4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>antibacterial activity</topic><topic>Antiinfectives and antibacterials</topic><topic>antimicrobial activity</topic><topic>Antimicrobial agents</topic><topic>antimicrobial properties</topic><topic>Atomic force microscopy</topic><topic>Barbarea verna</topic><topic>Biosynthesis</topic><topic>biotechnology</topic><topic>chemical method</topic><topic>Chemical synthesis</topic><topic>dynamic light scattering</topic><topic>E coli</topic><topic>E. coli bacteria</topic><topic>Epidermis</topic><topic>light scattering</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>microorganisms</topic><topic>Microscopy</topic><topic>nanofabrication</topic><topic>nanomedicine</topic><topic>Nanoparticles</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Organic chemistry</topic><topic>Photon correlation spectroscopy</topic><topic>physical method</topic><topic>Reagents</topic><topic>Reducing agents</topic><topic>S. epidermis</topic><topic>scanning electron microscopy</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Silver</topic><topic>silver nanoparticles</topic><topic>Silver nitrate</topic><topic>silver nitrates</topic><topic>size 30.0 nm to 40.0 nm</topic><topic>Technology</topic><topic>Triton X‐114</topic><topic>ultraviolet spectra</topic><topic>upland cress</topic><topic>UV–Vis absorption peak</topic><topic>UV–vis spectroscopy</topic><topic>visible spectra</topic><topic>wavelength 420.0 nm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, David L</creatorcontrib><creatorcontrib>Wang, Yale</creatorcontrib><creatorcontrib>Stealey, Samuel T</creatorcontrib><creatorcontrib>Alexander, Anne K</creatorcontrib><creatorcontrib>Kaltchev, Matey G</creatorcontrib><creatorcontrib>Chen, Junhong</creatorcontrib><creatorcontrib>Zhang, Wujie</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Micro &amp; nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Johnson, David L</au><au>Wang, Yale</au><au>Stealey, Samuel T</au><au>Alexander, Anne K</au><au>Kaltchev, Matey G</au><au>Chen, Junhong</au><au>Zhang, Wujie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biosynthesis of silver nanoparticles using upland cress: purification, characterisation, and antimicrobial activity</atitle><jtitle>Micro &amp; nano letters</jtitle><stitle>MICRO NANO LETT</stitle><date>2020-02-05</date><risdate>2020</risdate><volume>15</volume><issue>2</issue><spage>110</spage><epage>113</epage><pages>110-113</pages><issn>1750-0443</issn><eissn>1750-0443</eissn><abstract>Silver nanoparticles have traditionally been synthesised using physical and chemical methods, often requiring expensive equipment and reagents that pose risks to the environment. This work provides a green method for the biosynthesis of silver nanoparticles using leaf extracts from upland cress: Barbarea verna. Natural reducing agents within the leaf extracts of upland cress reduce silver ions from silver nitrates, resulting in the formation of silver nanoparticles. The silver nanoparticles were purified using centrifugation and extraction using Triton X-114. The resulting nanoparticles were characterised using UV–Vis spectroscopy, dynamic light scattering, atomic force microscopy, and scanning electron microscopy. Silver nanoparticles were shown to have a diameter of 30–40 nm with a characteristic UV–Vis absorption peak at 420 nm. Antimicrobial properties of the synthesised silver nanoparticles were also confirmed using S. epidermis and E. coli bacteria.</abstract><cop>HOBOKEN</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/mnl.2019.0528</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-4296-1945</orcidid><orcidid>https://orcid.org/0000-0001-8759-3408</orcidid><orcidid>https://orcid.org/0000-0001-6355-4551</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1750-0443
ispartof Micro & nano letters, 2020-02, Vol.15 (2), p.110-113
issn 1750-0443
1750-0443
language eng
recordid cdi_crossref_primary_10_1049_mnl_2019_0528
source Wiley Online Library (Open Access Collection)
subjects antibacterial activity
Antiinfectives and antibacterials
antimicrobial activity
Antimicrobial agents
antimicrobial properties
Atomic force microscopy
Barbarea verna
Biosynthesis
biotechnology
chemical method
Chemical synthesis
dynamic light scattering
E coli
E. coli bacteria
Epidermis
light scattering
Materials Science
Materials Science, Multidisciplinary
microorganisms
Microscopy
nanofabrication
nanomedicine
Nanoparticles
Nanoscience & Nanotechnology
Organic chemistry
Photon correlation spectroscopy
physical method
Reagents
Reducing agents
S. epidermis
scanning electron microscopy
Science & Technology
Science & Technology - Other Topics
Silver
silver nanoparticles
Silver nitrate
silver nitrates
size 30.0 nm to 40.0 nm
Technology
Triton X‐114
ultraviolet spectra
upland cress
UV–Vis absorption peak
UV–vis spectroscopy
visible spectra
wavelength 420.0 nm
title Biosynthesis of silver nanoparticles using upland cress: purification, characterisation, and antimicrobial activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biosynthesis%20of%20silver%20nanoparticles%20using%20upland%20cress:%20purification,%20characterisation,%20and%20antimicrobial%20activity&rft.jtitle=Micro%20&%20nano%20letters&rft.au=Johnson,%20David%20L&rft.date=2020-02-05&rft.volume=15&rft.issue=2&rft.spage=110&rft.epage=113&rft.pages=110-113&rft.issn=1750-0443&rft.eissn=1750-0443&rft_id=info:doi/10.1049/mnl.2019.0528&rft_dat=%3Cproquest_24P%3E2350105827%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350105827&rft_id=info:pmid/&rfr_iscdi=true