Optimisation estimation of uncertainty integrated with production information based on Bayesian fusion method

The new generation Geometrical Product Specifications require consideration of the effects of measurement uncertainty in the product inspection. This study estimated the measurement results and the uncertainty by integrating the statistical production information into the product detection results t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering (Stevenage, England) England), 2019-12, Vol.2019 (23), p.9178-9182
Hauptverfasser: Cheng, Yinbao, Fu, Huadong, Lyu, Jing, Wang, Zhongyu, Li, Hongli, Chen, Xiaohuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9182
container_issue 23
container_start_page 9178
container_title Journal of engineering (Stevenage, England)
container_volume 2019
creator Cheng, Yinbao
Fu, Huadong
Lyu, Jing
Wang, Zhongyu
Li, Hongli
Chen, Xiaohuai
description The new generation Geometrical Product Specifications require consideration of the effects of measurement uncertainty in the product inspection. This study estimated the measurement results and the uncertainty by integrating the statistical production information into the product detection results to rationally and fairly narrow the uncertainty area of qualification determination. Based on the Bayesian information fusion and statistical inference principle, the model of uncertainty evaluation is established. The Bayesian information fusion model integrated measuring information with manufacturing information was built, with which the uncertainty of product inspection was reappraised based on posteriori distribution function. The validity of the proposed method and theory was demonstrated by the example analysis.
doi_str_mv 10.1049/joe.2018.9213
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1049_joe_2018_9213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f656383e707543f8b6ad09070f37ea99</doaj_id><sourcerecordid>TJE2BF02919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3539-4be5d9c1fee4536b82ce3636c3c49f189a7da55b837170f2cb1864563677638b3</originalsourceid><addsrcrecordid>eNp9kMFvwiAYxZtlS2acx9173aEOSmnLcRrdXEy8uDOh9EMxWgzQmP73o9Ysu2wXeMDvvS-8KHrGaIpRxl4PBqYpwuWUpZjcRaMUUZwQguj9L_0YTZw7IIQwyVKU4VF02py9PmknvDZNDC4cBmlU3DYSrBe68V0cFthZ4aGOL9rv47M1dSuvpG6UsTdXJVwggpiJDpwWTaxa1z-cwO9N_RQ9KHF0MLnt4-hrudjOP5L15n01f1snklDCkqwCWjOJFUBGSV6VqQSSk1wSmTGFSyaKWlBalaTABVKprHCZZzQQRZGTsiLjaDXk1kYc-NmGT9mOG6H59cLYHRfWa3kErvLgKwkUqKAZUWWVixoxFGJJAYKxkJUMWdIa5yyonzyMeF89D9XzvnreVx_4fOAv-gjd_zDffi7S2RKlDPeDXgajBh-w1jahoj-GfANWGZXH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimisation estimation of uncertainty integrated with production information based on Bayesian fusion method</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><creator>Cheng, Yinbao ; Fu, Huadong ; Lyu, Jing ; Wang, Zhongyu ; Li, Hongli ; Chen, Xiaohuai</creator><creatorcontrib>Cheng, Yinbao ; Fu, Huadong ; Lyu, Jing ; Wang, Zhongyu ; Li, Hongli ; Chen, Xiaohuai</creatorcontrib><description>The new generation Geometrical Product Specifications require consideration of the effects of measurement uncertainty in the product inspection. This study estimated the measurement results and the uncertainty by integrating the statistical production information into the product detection results to rationally and fairly narrow the uncertainty area of qualification determination. Based on the Bayesian information fusion and statistical inference principle, the model of uncertainty evaluation is established. The Bayesian information fusion model integrated measuring information with manufacturing information was built, with which the uncertainty of product inspection was reappraised based on posteriori distribution function. The validity of the proposed method and theory was demonstrated by the example analysis.</description><identifier>ISSN: 2051-3305</identifier><identifier>EISSN: 2051-3305</identifier><identifier>DOI: 10.1049/joe.2018.9213</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>7th International Symposium on Test Automation and Instrumentation (ISTAI 2018) ; Bayes methods ; Bayesian fusion method ; Bayesian information fusion model ; generation geometrical product specifications ; inference mechanisms ; inspection ; measurement uncertainty ; optimisation estimation ; posteriori distribution function ; product detection results ; product inspection ; production engineering computing ; sensor fusion ; statistical analysis ; statistical inference principle ; statistical production information ; uncertainty evaluation</subject><ispartof>Journal of engineering (Stevenage, England), 2019-12, Vol.2019 (23), p.9178-9182</ispartof><rights>2021 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3539-4be5d9c1fee4536b82ce3636c3c49f189a7da55b837170f2cb1864563677638b3</citedby><cites>FETCH-LOGICAL-c3539-4be5d9c1fee4536b82ce3636c3c49f189a7da55b837170f2cb1864563677638b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fjoe.2018.9213$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fjoe.2018.9213$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,1411,2095,11542,27903,27904,45553,45554,46030,46454</link.rule.ids></links><search><creatorcontrib>Cheng, Yinbao</creatorcontrib><creatorcontrib>Fu, Huadong</creatorcontrib><creatorcontrib>Lyu, Jing</creatorcontrib><creatorcontrib>Wang, Zhongyu</creatorcontrib><creatorcontrib>Li, Hongli</creatorcontrib><creatorcontrib>Chen, Xiaohuai</creatorcontrib><title>Optimisation estimation of uncertainty integrated with production information based on Bayesian fusion method</title><title>Journal of engineering (Stevenage, England)</title><description>The new generation Geometrical Product Specifications require consideration of the effects of measurement uncertainty in the product inspection. This study estimated the measurement results and the uncertainty by integrating the statistical production information into the product detection results to rationally and fairly narrow the uncertainty area of qualification determination. Based on the Bayesian information fusion and statistical inference principle, the model of uncertainty evaluation is established. The Bayesian information fusion model integrated measuring information with manufacturing information was built, with which the uncertainty of product inspection was reappraised based on posteriori distribution function. The validity of the proposed method and theory was demonstrated by the example analysis.</description><subject>7th International Symposium on Test Automation and Instrumentation (ISTAI 2018)</subject><subject>Bayes methods</subject><subject>Bayesian fusion method</subject><subject>Bayesian information fusion model</subject><subject>generation geometrical product specifications</subject><subject>inference mechanisms</subject><subject>inspection</subject><subject>measurement uncertainty</subject><subject>optimisation estimation</subject><subject>posteriori distribution function</subject><subject>product detection results</subject><subject>product inspection</subject><subject>production engineering computing</subject><subject>sensor fusion</subject><subject>statistical analysis</subject><subject>statistical inference principle</subject><subject>statistical production information</subject><subject>uncertainty evaluation</subject><issn>2051-3305</issn><issn>2051-3305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kMFvwiAYxZtlS2acx9173aEOSmnLcRrdXEy8uDOh9EMxWgzQmP73o9Ysu2wXeMDvvS-8KHrGaIpRxl4PBqYpwuWUpZjcRaMUUZwQguj9L_0YTZw7IIQwyVKU4VF02py9PmknvDZNDC4cBmlU3DYSrBe68V0cFthZ4aGOL9rv47M1dSuvpG6UsTdXJVwggpiJDpwWTaxa1z-cwO9N_RQ9KHF0MLnt4-hrudjOP5L15n01f1snklDCkqwCWjOJFUBGSV6VqQSSk1wSmTGFSyaKWlBalaTABVKprHCZZzQQRZGTsiLjaDXk1kYc-NmGT9mOG6H59cLYHRfWa3kErvLgKwkUqKAZUWWVixoxFGJJAYKxkJUMWdIa5yyonzyMeF89D9XzvnreVx_4fOAv-gjd_zDffi7S2RKlDPeDXgajBh-w1jahoj-GfANWGZXH</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Cheng, Yinbao</creator><creator>Fu, Huadong</creator><creator>Lyu, Jing</creator><creator>Wang, Zhongyu</creator><creator>Li, Hongli</creator><creator>Chen, Xiaohuai</creator><general>The Institution of Engineering and Technology</general><general>Wiley</general><scope>IDLOA</scope><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>201912</creationdate><title>Optimisation estimation of uncertainty integrated with production information based on Bayesian fusion method</title><author>Cheng, Yinbao ; Fu, Huadong ; Lyu, Jing ; Wang, Zhongyu ; Li, Hongli ; Chen, Xiaohuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3539-4be5d9c1fee4536b82ce3636c3c49f189a7da55b837170f2cb1864563677638b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>7th International Symposium on Test Automation and Instrumentation (ISTAI 2018)</topic><topic>Bayes methods</topic><topic>Bayesian fusion method</topic><topic>Bayesian information fusion model</topic><topic>generation geometrical product specifications</topic><topic>inference mechanisms</topic><topic>inspection</topic><topic>measurement uncertainty</topic><topic>optimisation estimation</topic><topic>posteriori distribution function</topic><topic>product detection results</topic><topic>product inspection</topic><topic>production engineering computing</topic><topic>sensor fusion</topic><topic>statistical analysis</topic><topic>statistical inference principle</topic><topic>statistical production information</topic><topic>uncertainty evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yinbao</creatorcontrib><creatorcontrib>Fu, Huadong</creatorcontrib><creatorcontrib>Lyu, Jing</creatorcontrib><creatorcontrib>Wang, Zhongyu</creatorcontrib><creatorcontrib>Li, Hongli</creatorcontrib><creatorcontrib>Chen, Xiaohuai</creatorcontrib><collection>IET Digital Library (Open Access)</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of engineering (Stevenage, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yinbao</au><au>Fu, Huadong</au><au>Lyu, Jing</au><au>Wang, Zhongyu</au><au>Li, Hongli</au><au>Chen, Xiaohuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimisation estimation of uncertainty integrated with production information based on Bayesian fusion method</atitle><jtitle>Journal of engineering (Stevenage, England)</jtitle><date>2019-12</date><risdate>2019</risdate><volume>2019</volume><issue>23</issue><spage>9178</spage><epage>9182</epage><pages>9178-9182</pages><issn>2051-3305</issn><eissn>2051-3305</eissn><abstract>The new generation Geometrical Product Specifications require consideration of the effects of measurement uncertainty in the product inspection. This study estimated the measurement results and the uncertainty by integrating the statistical production information into the product detection results to rationally and fairly narrow the uncertainty area of qualification determination. Based on the Bayesian information fusion and statistical inference principle, the model of uncertainty evaluation is established. The Bayesian information fusion model integrated measuring information with manufacturing information was built, with which the uncertainty of product inspection was reappraised based on posteriori distribution function. The validity of the proposed method and theory was demonstrated by the example analysis.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/joe.2018.9213</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2051-3305
ispartof Journal of engineering (Stevenage, England), 2019-12, Vol.2019 (23), p.9178-9182
issn 2051-3305
2051-3305
language eng
recordid cdi_crossref_primary_10_1049_joe_2018_9213
source DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access
subjects 7th International Symposium on Test Automation and Instrumentation (ISTAI 2018)
Bayes methods
Bayesian fusion method
Bayesian information fusion model
generation geometrical product specifications
inference mechanisms
inspection
measurement uncertainty
optimisation estimation
posteriori distribution function
product detection results
product inspection
production engineering computing
sensor fusion
statistical analysis
statistical inference principle
statistical production information
uncertainty evaluation
title Optimisation estimation of uncertainty integrated with production information based on Bayesian fusion method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimisation%20estimation%20of%20uncertainty%20integrated%20with%20production%20information%20based%20on%20Bayesian%20fusion%20method&rft.jtitle=Journal%20of%20engineering%20(Stevenage,%20England)&rft.au=Cheng,%20Yinbao&rft.date=2019-12&rft.volume=2019&rft.issue=23&rft.spage=9178&rft.epage=9182&rft.pages=9178-9182&rft.issn=2051-3305&rft.eissn=2051-3305&rft_id=info:doi/10.1049/joe.2018.9213&rft_dat=%3Cwiley_cross%3ETJE2BF02919%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_f656383e707543f8b6ad09070f37ea99&rfr_iscdi=true