Optimisation estimation of uncertainty integrated with production information based on Bayesian fusion method
The new generation Geometrical Product Specifications require consideration of the effects of measurement uncertainty in the product inspection. This study estimated the measurement results and the uncertainty by integrating the statistical production information into the product detection results t...
Gespeichert in:
Veröffentlicht in: | Journal of engineering (Stevenage, England) England), 2019-12, Vol.2019 (23), p.9178-9182 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9182 |
---|---|
container_issue | 23 |
container_start_page | 9178 |
container_title | Journal of engineering (Stevenage, England) |
container_volume | 2019 |
creator | Cheng, Yinbao Fu, Huadong Lyu, Jing Wang, Zhongyu Li, Hongli Chen, Xiaohuai |
description | The new generation Geometrical Product Specifications require consideration of the effects of measurement uncertainty in the product inspection. This study estimated the measurement results and the uncertainty by integrating the statistical production information into the product detection results to rationally and fairly narrow the uncertainty area of qualification determination. Based on the Bayesian information fusion and statistical inference principle, the model of uncertainty evaluation is established. The Bayesian information fusion model integrated measuring information with manufacturing information was built, with which the uncertainty of product inspection was reappraised based on posteriori distribution function. The validity of the proposed method and theory was demonstrated by the example analysis. |
doi_str_mv | 10.1049/joe.2018.9213 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1049_joe_2018_9213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f656383e707543f8b6ad09070f37ea99</doaj_id><sourcerecordid>TJE2BF02919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3539-4be5d9c1fee4536b82ce3636c3c49f189a7da55b837170f2cb1864563677638b3</originalsourceid><addsrcrecordid>eNp9kMFvwiAYxZtlS2acx9173aEOSmnLcRrdXEy8uDOh9EMxWgzQmP73o9Ysu2wXeMDvvS-8KHrGaIpRxl4PBqYpwuWUpZjcRaMUUZwQguj9L_0YTZw7IIQwyVKU4VF02py9PmknvDZNDC4cBmlU3DYSrBe68V0cFthZ4aGOL9rv47M1dSuvpG6UsTdXJVwggpiJDpwWTaxa1z-cwO9N_RQ9KHF0MLnt4-hrudjOP5L15n01f1snklDCkqwCWjOJFUBGSV6VqQSSk1wSmTGFSyaKWlBalaTABVKprHCZZzQQRZGTsiLjaDXk1kYc-NmGT9mOG6H59cLYHRfWa3kErvLgKwkUqKAZUWWVixoxFGJJAYKxkJUMWdIa5yyonzyMeF89D9XzvnreVx_4fOAv-gjd_zDffi7S2RKlDPeDXgajBh-w1jahoj-GfANWGZXH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimisation estimation of uncertainty integrated with production information based on Bayesian fusion method</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><creator>Cheng, Yinbao ; Fu, Huadong ; Lyu, Jing ; Wang, Zhongyu ; Li, Hongli ; Chen, Xiaohuai</creator><creatorcontrib>Cheng, Yinbao ; Fu, Huadong ; Lyu, Jing ; Wang, Zhongyu ; Li, Hongli ; Chen, Xiaohuai</creatorcontrib><description>The new generation Geometrical Product Specifications require consideration of the effects of measurement uncertainty in the product inspection. This study estimated the measurement results and the uncertainty by integrating the statistical production information into the product detection results to rationally and fairly narrow the uncertainty area of qualification determination. Based on the Bayesian information fusion and statistical inference principle, the model of uncertainty evaluation is established. The Bayesian information fusion model integrated measuring information with manufacturing information was built, with which the uncertainty of product inspection was reappraised based on posteriori distribution function. The validity of the proposed method and theory was demonstrated by the example analysis.</description><identifier>ISSN: 2051-3305</identifier><identifier>EISSN: 2051-3305</identifier><identifier>DOI: 10.1049/joe.2018.9213</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>7th International Symposium on Test Automation and Instrumentation (ISTAI 2018) ; Bayes methods ; Bayesian fusion method ; Bayesian information fusion model ; generation geometrical product specifications ; inference mechanisms ; inspection ; measurement uncertainty ; optimisation estimation ; posteriori distribution function ; product detection results ; product inspection ; production engineering computing ; sensor fusion ; statistical analysis ; statistical inference principle ; statistical production information ; uncertainty evaluation</subject><ispartof>Journal of engineering (Stevenage, England), 2019-12, Vol.2019 (23), p.9178-9182</ispartof><rights>2021 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3539-4be5d9c1fee4536b82ce3636c3c49f189a7da55b837170f2cb1864563677638b3</citedby><cites>FETCH-LOGICAL-c3539-4be5d9c1fee4536b82ce3636c3c49f189a7da55b837170f2cb1864563677638b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fjoe.2018.9213$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fjoe.2018.9213$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,1411,2095,11542,27903,27904,45553,45554,46030,46454</link.rule.ids></links><search><creatorcontrib>Cheng, Yinbao</creatorcontrib><creatorcontrib>Fu, Huadong</creatorcontrib><creatorcontrib>Lyu, Jing</creatorcontrib><creatorcontrib>Wang, Zhongyu</creatorcontrib><creatorcontrib>Li, Hongli</creatorcontrib><creatorcontrib>Chen, Xiaohuai</creatorcontrib><title>Optimisation estimation of uncertainty integrated with production information based on Bayesian fusion method</title><title>Journal of engineering (Stevenage, England)</title><description>The new generation Geometrical Product Specifications require consideration of the effects of measurement uncertainty in the product inspection. This study estimated the measurement results and the uncertainty by integrating the statistical production information into the product detection results to rationally and fairly narrow the uncertainty area of qualification determination. Based on the Bayesian information fusion and statistical inference principle, the model of uncertainty evaluation is established. The Bayesian information fusion model integrated measuring information with manufacturing information was built, with which the uncertainty of product inspection was reappraised based on posteriori distribution function. The validity of the proposed method and theory was demonstrated by the example analysis.</description><subject>7th International Symposium on Test Automation and Instrumentation (ISTAI 2018)</subject><subject>Bayes methods</subject><subject>Bayesian fusion method</subject><subject>Bayesian information fusion model</subject><subject>generation geometrical product specifications</subject><subject>inference mechanisms</subject><subject>inspection</subject><subject>measurement uncertainty</subject><subject>optimisation estimation</subject><subject>posteriori distribution function</subject><subject>product detection results</subject><subject>product inspection</subject><subject>production engineering computing</subject><subject>sensor fusion</subject><subject>statistical analysis</subject><subject>statistical inference principle</subject><subject>statistical production information</subject><subject>uncertainty evaluation</subject><issn>2051-3305</issn><issn>2051-3305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kMFvwiAYxZtlS2acx9173aEOSmnLcRrdXEy8uDOh9EMxWgzQmP73o9Ysu2wXeMDvvS-8KHrGaIpRxl4PBqYpwuWUpZjcRaMUUZwQguj9L_0YTZw7IIQwyVKU4VF02py9PmknvDZNDC4cBmlU3DYSrBe68V0cFthZ4aGOL9rv47M1dSuvpG6UsTdXJVwggpiJDpwWTaxa1z-cwO9N_RQ9KHF0MLnt4-hrudjOP5L15n01f1snklDCkqwCWjOJFUBGSV6VqQSSk1wSmTGFSyaKWlBalaTABVKprHCZZzQQRZGTsiLjaDXk1kYc-NmGT9mOG6H59cLYHRfWa3kErvLgKwkUqKAZUWWVixoxFGJJAYKxkJUMWdIa5yyonzyMeF89D9XzvnreVx_4fOAv-gjd_zDffi7S2RKlDPeDXgajBh-w1jahoj-GfANWGZXH</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Cheng, Yinbao</creator><creator>Fu, Huadong</creator><creator>Lyu, Jing</creator><creator>Wang, Zhongyu</creator><creator>Li, Hongli</creator><creator>Chen, Xiaohuai</creator><general>The Institution of Engineering and Technology</general><general>Wiley</general><scope>IDLOA</scope><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>201912</creationdate><title>Optimisation estimation of uncertainty integrated with production information based on Bayesian fusion method</title><author>Cheng, Yinbao ; Fu, Huadong ; Lyu, Jing ; Wang, Zhongyu ; Li, Hongli ; Chen, Xiaohuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3539-4be5d9c1fee4536b82ce3636c3c49f189a7da55b837170f2cb1864563677638b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>7th International Symposium on Test Automation and Instrumentation (ISTAI 2018)</topic><topic>Bayes methods</topic><topic>Bayesian fusion method</topic><topic>Bayesian information fusion model</topic><topic>generation geometrical product specifications</topic><topic>inference mechanisms</topic><topic>inspection</topic><topic>measurement uncertainty</topic><topic>optimisation estimation</topic><topic>posteriori distribution function</topic><topic>product detection results</topic><topic>product inspection</topic><topic>production engineering computing</topic><topic>sensor fusion</topic><topic>statistical analysis</topic><topic>statistical inference principle</topic><topic>statistical production information</topic><topic>uncertainty evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yinbao</creatorcontrib><creatorcontrib>Fu, Huadong</creatorcontrib><creatorcontrib>Lyu, Jing</creatorcontrib><creatorcontrib>Wang, Zhongyu</creatorcontrib><creatorcontrib>Li, Hongli</creatorcontrib><creatorcontrib>Chen, Xiaohuai</creatorcontrib><collection>IET Digital Library (Open Access)</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of engineering (Stevenage, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yinbao</au><au>Fu, Huadong</au><au>Lyu, Jing</au><au>Wang, Zhongyu</au><au>Li, Hongli</au><au>Chen, Xiaohuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimisation estimation of uncertainty integrated with production information based on Bayesian fusion method</atitle><jtitle>Journal of engineering (Stevenage, England)</jtitle><date>2019-12</date><risdate>2019</risdate><volume>2019</volume><issue>23</issue><spage>9178</spage><epage>9182</epage><pages>9178-9182</pages><issn>2051-3305</issn><eissn>2051-3305</eissn><abstract>The new generation Geometrical Product Specifications require consideration of the effects of measurement uncertainty in the product inspection. This study estimated the measurement results and the uncertainty by integrating the statistical production information into the product detection results to rationally and fairly narrow the uncertainty area of qualification determination. Based on the Bayesian information fusion and statistical inference principle, the model of uncertainty evaluation is established. The Bayesian information fusion model integrated measuring information with manufacturing information was built, with which the uncertainty of product inspection was reappraised based on posteriori distribution function. The validity of the proposed method and theory was demonstrated by the example analysis.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/joe.2018.9213</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-3305 |
ispartof | Journal of engineering (Stevenage, England), 2019-12, Vol.2019 (23), p.9178-9182 |
issn | 2051-3305 2051-3305 |
language | eng |
recordid | cdi_crossref_primary_10_1049_joe_2018_9213 |
source | DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access |
subjects | 7th International Symposium on Test Automation and Instrumentation (ISTAI 2018) Bayes methods Bayesian fusion method Bayesian information fusion model generation geometrical product specifications inference mechanisms inspection measurement uncertainty optimisation estimation posteriori distribution function product detection results product inspection production engineering computing sensor fusion statistical analysis statistical inference principle statistical production information uncertainty evaluation |
title | Optimisation estimation of uncertainty integrated with production information based on Bayesian fusion method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimisation%20estimation%20of%20uncertainty%20integrated%20with%20production%20information%20based%20on%20Bayesian%20fusion%20method&rft.jtitle=Journal%20of%20engineering%20(Stevenage,%20England)&rft.au=Cheng,%20Yinbao&rft.date=2019-12&rft.volume=2019&rft.issue=23&rft.spage=9178&rft.epage=9182&rft.pages=9178-9182&rft.issn=2051-3305&rft.eissn=2051-3305&rft_id=info:doi/10.1049/joe.2018.9213&rft_dat=%3Cwiley_cross%3ETJE2BF02919%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_f656383e707543f8b6ad09070f37ea99&rfr_iscdi=true |