Image classification using convolutional neural network with wavelet domain inputs

Commonly used convolutional neural networks (CNNs) usually compress high‐resolution input images. Although it reduces the computation requirements into a reasonable range, the downsampling operation causes information loss, which affects the accuracy of image classification. How to adopt high‐resolu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET image processing 2022-06, Vol.16 (8), p.2037-2048
Hauptverfasser: Wang, Luyuan, Sun, Yankui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2048
container_issue 8
container_start_page 2037
container_title IET image processing
container_volume 16
creator Wang, Luyuan
Sun, Yankui
description Commonly used convolutional neural networks (CNNs) usually compress high‐resolution input images. Although it reduces the computation requirements into a reasonable range, the downsampling operation causes information loss, which affects the accuracy of image classification. How to adopt high‐resolution image inputs to improve the quality of input information and thus improve the classification accuracy without changing the overall structure of the pre‐defined CNN model or increasing the model parameters is an important issue. Here, a CNN model with wavelet domain inputs is proposed to provide a solving scheme. Specifically, the proposed method applies wavelet packet transform or dual‐tree complex wavelet transform to extract information from input images with higher resolutions in the image pre‐processing stage. Some subband image channels are selected as the inputs of conventional CNNs where the first several convolutional layers are removed, so that the networks directly learn in the wavelet domain. Experiment results on the Caltech‐256 dataset and the Describable Textures Dataset with the ResNet‐50 show that the classification accuracy of our method can have a maximum improvement of 2.15% and 10.26%, respectively. These validate the effectiveness of our proposed scheme. This code is publicly available at https://github.com/BeBeBerr/wavelet‐cnn.
doi_str_mv 10.1049/ipr2.12466
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1049_ipr2_12466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>IPR212466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3096-c3c4ee9c1af487188de1368f438beac79f2ef02c923488b7c31d9e2f1a4fa1713</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4Qu8RkrxOE5iL1HFo1IlUAXryHXGxZCX7KRR_56mQSzZzB1dnZnFIeQW2AKYUPeu9XwBXKTpGZlBlkCk0jQ7_9sTdUmuQvhiLFFMJjOyWVV6h9SUOgRnndGda2raB1fvqGnqfVP2Y6NLWmPvT9ENjf-mg-s-6aD3WGJHi6bSrqaubvsuXJMLq8uAN785Jx9Pj-_Ll2j9-rxaPqwjEzOVHqcRiMqAtkJmIGWBEKfSilhuUZtMWY6WcaN4LKTcZiaGQiG3oIXVkEE8J3fTX-ObEDzavPWu0v6QA8tHG_loIz_ZOMIwwYMr8fAPma_eNny6-QHZPmQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Image classification using convolutional neural network with wavelet domain inputs</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Luyuan ; Sun, Yankui</creator><creatorcontrib>Wang, Luyuan ; Sun, Yankui</creatorcontrib><description>Commonly used convolutional neural networks (CNNs) usually compress high‐resolution input images. Although it reduces the computation requirements into a reasonable range, the downsampling operation causes information loss, which affects the accuracy of image classification. How to adopt high‐resolution image inputs to improve the quality of input information and thus improve the classification accuracy without changing the overall structure of the pre‐defined CNN model or increasing the model parameters is an important issue. Here, a CNN model with wavelet domain inputs is proposed to provide a solving scheme. Specifically, the proposed method applies wavelet packet transform or dual‐tree complex wavelet transform to extract information from input images with higher resolutions in the image pre‐processing stage. Some subband image channels are selected as the inputs of conventional CNNs where the first several convolutional layers are removed, so that the networks directly learn in the wavelet domain. Experiment results on the Caltech‐256 dataset and the Describable Textures Dataset with the ResNet‐50 show that the classification accuracy of our method can have a maximum improvement of 2.15% and 10.26%, respectively. These validate the effectiveness of our proposed scheme. This code is publicly available at https://github.com/BeBeBerr/wavelet‐cnn.</description><identifier>ISSN: 1751-9659</identifier><identifier>EISSN: 1751-9667</identifier><identifier>DOI: 10.1049/ipr2.12466</identifier><language>eng</language><ispartof>IET image processing, 2022-06, Vol.16 (8), p.2037-2048</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd on behalf of The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3096-c3c4ee9c1af487188de1368f438beac79f2ef02c923488b7c31d9e2f1a4fa1713</citedby><cites>FETCH-LOGICAL-c3096-c3c4ee9c1af487188de1368f438beac79f2ef02c923488b7c31d9e2f1a4fa1713</cites><orcidid>0000-0001-7155-8261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fipr2.12466$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fipr2.12466$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,1411,11542,27903,27904,45553,45554,46030,46454</link.rule.ids></links><search><creatorcontrib>Wang, Luyuan</creatorcontrib><creatorcontrib>Sun, Yankui</creatorcontrib><title>Image classification using convolutional neural network with wavelet domain inputs</title><title>IET image processing</title><description>Commonly used convolutional neural networks (CNNs) usually compress high‐resolution input images. Although it reduces the computation requirements into a reasonable range, the downsampling operation causes information loss, which affects the accuracy of image classification. How to adopt high‐resolution image inputs to improve the quality of input information and thus improve the classification accuracy without changing the overall structure of the pre‐defined CNN model or increasing the model parameters is an important issue. Here, a CNN model with wavelet domain inputs is proposed to provide a solving scheme. Specifically, the proposed method applies wavelet packet transform or dual‐tree complex wavelet transform to extract information from input images with higher resolutions in the image pre‐processing stage. Some subband image channels are selected as the inputs of conventional CNNs where the first several convolutional layers are removed, so that the networks directly learn in the wavelet domain. Experiment results on the Caltech‐256 dataset and the Describable Textures Dataset with the ResNet‐50 show that the classification accuracy of our method can have a maximum improvement of 2.15% and 10.26%, respectively. These validate the effectiveness of our proposed scheme. This code is publicly available at https://github.com/BeBeBerr/wavelet‐cnn.</description><issn>1751-9659</issn><issn>1751-9667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kMtOwzAQRS0EEqWw4Qu8RkrxOE5iL1HFo1IlUAXryHXGxZCX7KRR_56mQSzZzB1dnZnFIeQW2AKYUPeu9XwBXKTpGZlBlkCk0jQ7_9sTdUmuQvhiLFFMJjOyWVV6h9SUOgRnndGda2raB1fvqGnqfVP2Y6NLWmPvT9ENjf-mg-s-6aD3WGJHi6bSrqaubvsuXJMLq8uAN785Jx9Pj-_Ll2j9-rxaPqwjEzOVHqcRiMqAtkJmIGWBEKfSilhuUZtMWY6WcaN4LKTcZiaGQiG3oIXVkEE8J3fTX-ObEDzavPWu0v6QA8tHG_loIz_ZOMIwwYMr8fAPma_eNny6-QHZPmQw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Wang, Luyuan</creator><creator>Sun, Yankui</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7155-8261</orcidid></search><sort><creationdate>20220601</creationdate><title>Image classification using convolutional neural network with wavelet domain inputs</title><author>Wang, Luyuan ; Sun, Yankui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3096-c3c4ee9c1af487188de1368f438beac79f2ef02c923488b7c31d9e2f1a4fa1713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Luyuan</creatorcontrib><creatorcontrib>Sun, Yankui</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>IET image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Luyuan</au><au>Sun, Yankui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image classification using convolutional neural network with wavelet domain inputs</atitle><jtitle>IET image processing</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>16</volume><issue>8</issue><spage>2037</spage><epage>2048</epage><pages>2037-2048</pages><issn>1751-9659</issn><eissn>1751-9667</eissn><abstract>Commonly used convolutional neural networks (CNNs) usually compress high‐resolution input images. Although it reduces the computation requirements into a reasonable range, the downsampling operation causes information loss, which affects the accuracy of image classification. How to adopt high‐resolution image inputs to improve the quality of input information and thus improve the classification accuracy without changing the overall structure of the pre‐defined CNN model or increasing the model parameters is an important issue. Here, a CNN model with wavelet domain inputs is proposed to provide a solving scheme. Specifically, the proposed method applies wavelet packet transform or dual‐tree complex wavelet transform to extract information from input images with higher resolutions in the image pre‐processing stage. Some subband image channels are selected as the inputs of conventional CNNs where the first several convolutional layers are removed, so that the networks directly learn in the wavelet domain. Experiment results on the Caltech‐256 dataset and the Describable Textures Dataset with the ResNet‐50 show that the classification accuracy of our method can have a maximum improvement of 2.15% and 10.26%, respectively. These validate the effectiveness of our proposed scheme. This code is publicly available at https://github.com/BeBeBerr/wavelet‐cnn.</abstract><doi>10.1049/ipr2.12466</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7155-8261</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-9659
ispartof IET image processing, 2022-06, Vol.16 (8), p.2037-2048
issn 1751-9659
1751-9667
language eng
recordid cdi_crossref_primary_10_1049_ipr2_12466
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Image classification using convolutional neural network with wavelet domain inputs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A50%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20classification%20using%20convolutional%20neural%20network%20with%20wavelet%20domain%20inputs&rft.jtitle=IET%20image%20processing&rft.au=Wang,%20Luyuan&rft.date=2022-06-01&rft.volume=16&rft.issue=8&rft.spage=2037&rft.epage=2048&rft.pages=2037-2048&rft.issn=1751-9659&rft.eissn=1751-9667&rft_id=info:doi/10.1049/ipr2.12466&rft_dat=%3Cwiley_cross%3EIPR212466%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true