Quaternion‐based improved cuckoo algorithm for colour UAV image edge detection

With the extensive application of unmanned aerial vehicles (UAVs), there is an increasing demand for fast processing of coloured UAV images. The coloured UAV image pixels are usually represented by quaternion vectors with three bands of visible light corresponding to the three imaginary parts of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET image processing 2022-02, Vol.16 (3), p.926-935
Hauptverfasser: Liu, Dujin, Pu, Guolin, Wu, Xiaoyan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 935
container_issue 3
container_start_page 926
container_title IET image processing
container_volume 16
creator Liu, Dujin
Pu, Guolin
Wu, Xiaoyan
description With the extensive application of unmanned aerial vehicles (UAVs), there is an increasing demand for fast processing of coloured UAV images. The coloured UAV image pixels are usually represented by quaternion vectors with three bands of visible light corresponding to the three imaginary parts of the pure imaginary quaternion. Accordingly, the colour image edge points can be determined based on the quaternion polar coordinating the rotation principle. Here, a quaternion‐based improved cuckoo algorithm is proposed to perform fast processing for UAVs images. In particular, a novel guiding equation is used to optimize the positions of the improved cuckoo algorithm before the Levi flight. Furthermore, a novel disturbance equation is used to obtain a varied location for the next location after the Levi flight. Comprehensive experiments are conducted to evaluate the performance of the proposed solution. The experimental results showed that the proposed method significantly reduces the image processing time and remarkably improves the quality.
doi_str_mv 10.1049/ipr2.12398
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1049_ipr2_12398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>IPR212398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2738-d68664e16925394b8e8efa12527f3bff59eb072dafc0476e88e75fcdaeccecd13</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4QuyRkqxnfi1rCoelSpREGUbOfa4BNI6chJQd3wC38iX4BLEks3MXZy5Gh2EzgmeEJyry6oJdEJopuQBGhHBSKo4F4d_maljdNK2LxgzhSUboeV9rzsI28pvvz4-S92CTapNE_xbDKY3r94nul77UHXPm8T5kBhf-z4kq-lTBPUaErBxWOjAdLHlFB05Xbdw9rvHaHV99Ti7TRd3N_PZdJEaKjKZWi45z4FwRVmm8lKCBKcJZVS4rHSOKSixoFY7g3PBQUoQzBmrwRgwlmRjdDH0muDbNoArmhD_CbuC4GLvoti7KH5cRJgM8HtVw-4fspgvH-hw8w0ujmQC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quaternion‐based improved cuckoo algorithm for colour UAV image edge detection</title><source>Wiley Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><creator>Liu, Dujin ; Pu, Guolin ; Wu, Xiaoyan</creator><creatorcontrib>Liu, Dujin ; Pu, Guolin ; Wu, Xiaoyan</creatorcontrib><description>With the extensive application of unmanned aerial vehicles (UAVs), there is an increasing demand for fast processing of coloured UAV images. The coloured UAV image pixels are usually represented by quaternion vectors with three bands of visible light corresponding to the three imaginary parts of the pure imaginary quaternion. Accordingly, the colour image edge points can be determined based on the quaternion polar coordinating the rotation principle. Here, a quaternion‐based improved cuckoo algorithm is proposed to perform fast processing for UAVs images. In particular, a novel guiding equation is used to optimize the positions of the improved cuckoo algorithm before the Levi flight. Furthermore, a novel disturbance equation is used to obtain a varied location for the next location after the Levi flight. Comprehensive experiments are conducted to evaluate the performance of the proposed solution. The experimental results showed that the proposed method significantly reduces the image processing time and remarkably improves the quality.</description><identifier>ISSN: 1751-9659</identifier><identifier>EISSN: 1751-9667</identifier><identifier>DOI: 10.1049/ipr2.12398</identifier><language>eng</language><ispartof>IET image processing, 2022-02, Vol.16 (3), p.926-935</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd on behalf of The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2738-d68664e16925394b8e8efa12527f3bff59eb072dafc0476e88e75fcdaeccecd13</citedby><cites>FETCH-LOGICAL-c2738-d68664e16925394b8e8efa12527f3bff59eb072dafc0476e88e75fcdaeccecd13</cites><orcidid>0000-0001-8822-6722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fipr2.12398$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fipr2.12398$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids></links><search><creatorcontrib>Liu, Dujin</creatorcontrib><creatorcontrib>Pu, Guolin</creatorcontrib><creatorcontrib>Wu, Xiaoyan</creatorcontrib><title>Quaternion‐based improved cuckoo algorithm for colour UAV image edge detection</title><title>IET image processing</title><description>With the extensive application of unmanned aerial vehicles (UAVs), there is an increasing demand for fast processing of coloured UAV images. The coloured UAV image pixels are usually represented by quaternion vectors with three bands of visible light corresponding to the three imaginary parts of the pure imaginary quaternion. Accordingly, the colour image edge points can be determined based on the quaternion polar coordinating the rotation principle. Here, a quaternion‐based improved cuckoo algorithm is proposed to perform fast processing for UAVs images. In particular, a novel guiding equation is used to optimize the positions of the improved cuckoo algorithm before the Levi flight. Furthermore, a novel disturbance equation is used to obtain a varied location for the next location after the Levi flight. Comprehensive experiments are conducted to evaluate the performance of the proposed solution. The experimental results showed that the proposed method significantly reduces the image processing time and remarkably improves the quality.</description><issn>1751-9659</issn><issn>1751-9667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kMtOwzAQRS0EEqWw4QuyRkqxnfi1rCoelSpREGUbOfa4BNI6chJQd3wC38iX4BLEks3MXZy5Gh2EzgmeEJyry6oJdEJopuQBGhHBSKo4F4d_maljdNK2LxgzhSUboeV9rzsI28pvvz4-S92CTapNE_xbDKY3r94nul77UHXPm8T5kBhf-z4kq-lTBPUaErBxWOjAdLHlFB05Xbdw9rvHaHV99Ti7TRd3N_PZdJEaKjKZWi45z4FwRVmm8lKCBKcJZVS4rHSOKSixoFY7g3PBQUoQzBmrwRgwlmRjdDH0muDbNoArmhD_CbuC4GLvoti7KH5cRJgM8HtVw-4fspgvH-hw8w0ujmQC</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Liu, Dujin</creator><creator>Pu, Guolin</creator><creator>Wu, Xiaoyan</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8822-6722</orcidid></search><sort><creationdate>202202</creationdate><title>Quaternion‐based improved cuckoo algorithm for colour UAV image edge detection</title><author>Liu, Dujin ; Pu, Guolin ; Wu, Xiaoyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2738-d68664e16925394b8e8efa12527f3bff59eb072dafc0476e88e75fcdaeccecd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dujin</creatorcontrib><creatorcontrib>Pu, Guolin</creatorcontrib><creatorcontrib>Wu, Xiaoyan</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>IET image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dujin</au><au>Pu, Guolin</au><au>Wu, Xiaoyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quaternion‐based improved cuckoo algorithm for colour UAV image edge detection</atitle><jtitle>IET image processing</jtitle><date>2022-02</date><risdate>2022</risdate><volume>16</volume><issue>3</issue><spage>926</spage><epage>935</epage><pages>926-935</pages><issn>1751-9659</issn><eissn>1751-9667</eissn><abstract>With the extensive application of unmanned aerial vehicles (UAVs), there is an increasing demand for fast processing of coloured UAV images. The coloured UAV image pixels are usually represented by quaternion vectors with three bands of visible light corresponding to the three imaginary parts of the pure imaginary quaternion. Accordingly, the colour image edge points can be determined based on the quaternion polar coordinating the rotation principle. Here, a quaternion‐based improved cuckoo algorithm is proposed to perform fast processing for UAVs images. In particular, a novel guiding equation is used to optimize the positions of the improved cuckoo algorithm before the Levi flight. Furthermore, a novel disturbance equation is used to obtain a varied location for the next location after the Levi flight. Comprehensive experiments are conducted to evaluate the performance of the proposed solution. The experimental results showed that the proposed method significantly reduces the image processing time and remarkably improves the quality.</abstract><doi>10.1049/ipr2.12398</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8822-6722</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-9659
ispartof IET image processing, 2022-02, Vol.16 (3), p.926-935
issn 1751-9659
1751-9667
language eng
recordid cdi_crossref_primary_10_1049_ipr2_12398
source Wiley Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles
title Quaternion‐based improved cuckoo algorithm for colour UAV image edge detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quaternion%E2%80%90based%20improved%20cuckoo%20algorithm%20for%20colour%20UAV%20image%20edge%20detection&rft.jtitle=IET%20image%20processing&rft.au=Liu,%20Dujin&rft.date=2022-02&rft.volume=16&rft.issue=3&rft.spage=926&rft.epage=935&rft.pages=926-935&rft.issn=1751-9659&rft.eissn=1751-9667&rft_id=info:doi/10.1049/ipr2.12398&rft_dat=%3Cwiley_cross%3EIPR212398%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true