Transimpedance amplifiers with 133 GHz bandwidth on 130 nm indium phosphide double heterojunction bipolar transistors
In this work, the authors present two transimpedance amplifier (TIA) circuits designed for fibre optical interconnect systems. They compare a common base (CB) topology with a common emitter (CE) shunt–shunt feedback topology in terms of frequency response, power consumption, noise, and input impedan...
Gespeichert in:
Veröffentlicht in: | Electronics letters 2019-05, Vol.55 (9), p.521-523 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 523 |
---|---|
container_issue | 9 |
container_start_page | 521 |
container_title | Electronics letters |
container_volume | 55 |
creator | Giannakopoulos, S He, Z Darwazeh, I Zirath, H |
description | In this work, the authors present two transimpedance amplifier (TIA) circuits designed for fibre optical interconnect systems. They compare a common base (CB) topology with a common emitter (CE) shunt–shunt feedback topology in terms of frequency response, power consumption, noise, and input impedance. The two TIAs are designed on a 130 nm indium phosphide double heterojunction bipolar transistor technology from Teledyne Scientific Company (TSC) with an ft/fmax of 520 GHz/1.15 THz and are measured in the frequency and time domains. They exhibit a transimpedance gain of 42 dBΩ with a 133 GHz bandwidth, the highest bandwidth reported in the literature and power consumption of 32.3 mW for the CB and 25.5 mW for the CE. Eye diagram measurements were conducted up to 64 Gbps and input referred noise density was measured at $30.2\, {\rm pA}/\sqrt {{\rm Hz}} $30.2pA/Hz for the CB and $13.9\, {\rm pA}/\sqrt {{\rm Hz}} $13.9pA/Hz for the CE. |
doi_str_mv | 10.1049/el.2018.8135 |
format | Article |
fullrecord | <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1049_el_2018_8135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ELL2BF06370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4570-79a57772e4420b3c6b1ed789d72f88864bf4f050c8d43cc6af3f0689c4c5fe1a3</originalsourceid><addsrcrecordid>eNp9kc-L1TAQgIMo-Njdm39ADh482LeTJm3Soy77Q3jgwRW8hTSZ0CxtU5KWx_rXm-cT8bB4mcDwzTeTGULeMdgzEN01jvsamNorxptXZFciVB1jP16THQDjVcM68ZZc5Rx6YIKJFgTbke0xmTmHaUFnZovUTMsYfMCU6TGsA2Wc0_uHn7Q3szsGVzJxLkmg80TD7MI20WWIeRmCQ-ri1o9IB1wxxadttmsodB-WOJpE19-d8hpTviRvvBkzXv15L8j3u9vHm4fq8PX-y82nQ2VFI6GSnWmklDUKUUPPbdszdFJ1TtZeKdWK3gsPDVjlBLe2NZ57aFVnhW08MsMvyLezNx9x2Xq9pDCZ9KyjCTphRpPsoO1gxql8WGfUnfdtbWupyxZBC25arbwVWjjhQFlvuT1ZP56tNsWcE_q_Xgb6dAuNoz7d4mRpCt6c8WMY8fm_rL49HOrPd9ByCaXu_bku4Kqf4pbmsqpC_IMvzhfswwvYi5P8AiolpvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transimpedance amplifiers with 133 GHz bandwidth on 130 nm indium phosphide double heterojunction bipolar transistors</title><source>Wiley Online Library Open Access</source><creator>Giannakopoulos, S ; He, Z ; Darwazeh, I ; Zirath, H</creator><creatorcontrib>Giannakopoulos, S ; He, Z ; Darwazeh, I ; Zirath, H</creatorcontrib><description>In this work, the authors present two transimpedance amplifier (TIA) circuits designed for fibre optical interconnect systems. They compare a common base (CB) topology with a common emitter (CE) shunt–shunt feedback topology in terms of frequency response, power consumption, noise, and input impedance. The two TIAs are designed on a 130 nm indium phosphide double heterojunction bipolar transistor technology from Teledyne Scientific Company (TSC) with an ft/fmax of 520 GHz/1.15 THz and are measured in the frequency and time domains. They exhibit a transimpedance gain of 42 dBΩ with a 133 GHz bandwidth, the highest bandwidth reported in the literature and power consumption of 32.3 mW for the CB and 25.5 mW for the CE. Eye diagram measurements were conducted up to 64 Gbps and input referred noise density was measured at $30.2\, {\rm pA}/\sqrt {{\rm Hz}} $30.2pA/Hz for the CB and $13.9\, {\rm pA}/\sqrt {{\rm Hz}} $13.9pA/Hz for the CE.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2018.8135</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>bandwidth 133.0 GHz ; CB topology ; circuit feedback ; Circuits and systems ; common base topology ; common emitter shunt–shunt feedback topology ; eye diagram measurements ; fibre optical interconnect systems ; frequency 1.15 THz ; frequency 520.0 GHz ; frequency domains ; frequency response ; frequency‐domain analysis ; heterojunction bipolar transistors ; III‐V semiconductors ; indium compounds ; indium phosphide double heterojunction bipolar transistor technology ; InP ; input impedance ; microwave photonics ; operational amplifiers ; optical fibre amplifiers ; optical interconnections ; power 25.5 mW ; power 32.3 mW ; power consumption ; size 130.0 nm ; submillimetre wave amplifiers ; submillimetre wave transistors ; TIA design ; time domains ; time‐domain analysis ; transimpedance amplifier circuits ; transimpedance gain ; wide band gap semiconductors</subject><ispartof>Electronics letters, 2019-05, Vol.55 (9), p.521-523</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4570-79a57772e4420b3c6b1ed789d72f88864bf4f050c8d43cc6af3f0689c4c5fe1a3</citedby><cites>FETCH-LOGICAL-c4570-79a57772e4420b3c6b1ed789d72f88864bf4f050c8d43cc6af3f0689c4c5fe1a3</cites><orcidid>0000-0003-2846-9479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2018.8135$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2018.8135$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,11543,27903,27904,45553,45554,46030,46454</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2018.8135$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://research.chalmers.se/publication/511883$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Giannakopoulos, S</creatorcontrib><creatorcontrib>He, Z</creatorcontrib><creatorcontrib>Darwazeh, I</creatorcontrib><creatorcontrib>Zirath, H</creatorcontrib><title>Transimpedance amplifiers with 133 GHz bandwidth on 130 nm indium phosphide double heterojunction bipolar transistors</title><title>Electronics letters</title><description>In this work, the authors present two transimpedance amplifier (TIA) circuits designed for fibre optical interconnect systems. They compare a common base (CB) topology with a common emitter (CE) shunt–shunt feedback topology in terms of frequency response, power consumption, noise, and input impedance. The two TIAs are designed on a 130 nm indium phosphide double heterojunction bipolar transistor technology from Teledyne Scientific Company (TSC) with an ft/fmax of 520 GHz/1.15 THz and are measured in the frequency and time domains. They exhibit a transimpedance gain of 42 dBΩ with a 133 GHz bandwidth, the highest bandwidth reported in the literature and power consumption of 32.3 mW for the CB and 25.5 mW for the CE. Eye diagram measurements were conducted up to 64 Gbps and input referred noise density was measured at $30.2\, {\rm pA}/\sqrt {{\rm Hz}} $30.2pA/Hz for the CB and $13.9\, {\rm pA}/\sqrt {{\rm Hz}} $13.9pA/Hz for the CE.</description><subject>bandwidth 133.0 GHz</subject><subject>CB topology</subject><subject>circuit feedback</subject><subject>Circuits and systems</subject><subject>common base topology</subject><subject>common emitter shunt–shunt feedback topology</subject><subject>eye diagram measurements</subject><subject>fibre optical interconnect systems</subject><subject>frequency 1.15 THz</subject><subject>frequency 520.0 GHz</subject><subject>frequency domains</subject><subject>frequency response</subject><subject>frequency‐domain analysis</subject><subject>heterojunction bipolar transistors</subject><subject>III‐V semiconductors</subject><subject>indium compounds</subject><subject>indium phosphide double heterojunction bipolar transistor technology</subject><subject>InP</subject><subject>input impedance</subject><subject>microwave photonics</subject><subject>operational amplifiers</subject><subject>optical fibre amplifiers</subject><subject>optical interconnections</subject><subject>power 25.5 mW</subject><subject>power 32.3 mW</subject><subject>power consumption</subject><subject>size 130.0 nm</subject><subject>submillimetre wave amplifiers</subject><subject>submillimetre wave transistors</subject><subject>TIA design</subject><subject>time domains</subject><subject>time‐domain analysis</subject><subject>transimpedance amplifier circuits</subject><subject>transimpedance gain</subject><subject>wide band gap semiconductors</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc-L1TAQgIMo-Njdm39ADh482LeTJm3Soy77Q3jgwRW8hTSZ0CxtU5KWx_rXm-cT8bB4mcDwzTeTGULeMdgzEN01jvsamNorxptXZFciVB1jP16THQDjVcM68ZZc5Rx6YIKJFgTbke0xmTmHaUFnZovUTMsYfMCU6TGsA2Wc0_uHn7Q3szsGVzJxLkmg80TD7MI20WWIeRmCQ-ri1o9IB1wxxadttmsodB-WOJpE19-d8hpTviRvvBkzXv15L8j3u9vHm4fq8PX-y82nQ2VFI6GSnWmklDUKUUPPbdszdFJ1TtZeKdWK3gsPDVjlBLe2NZ57aFVnhW08MsMvyLezNx9x2Xq9pDCZ9KyjCTphRpPsoO1gxql8WGfUnfdtbWupyxZBC25arbwVWjjhQFlvuT1ZP56tNsWcE_q_Xgb6dAuNoz7d4mRpCt6c8WMY8fm_rL49HOrPd9ByCaXu_bku4Kqf4pbmsqpC_IMvzhfswwvYi5P8AiolpvA</recordid><startdate>20190502</startdate><enddate>20190502</enddate><creator>Giannakopoulos, S</creator><creator>He, Z</creator><creator>Darwazeh, I</creator><creator>Zirath, H</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1S</scope><orcidid>https://orcid.org/0000-0003-2846-9479</orcidid></search><sort><creationdate>20190502</creationdate><title>Transimpedance amplifiers with 133 GHz bandwidth on 130 nm indium phosphide double heterojunction bipolar transistors</title><author>Giannakopoulos, S ; He, Z ; Darwazeh, I ; Zirath, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4570-79a57772e4420b3c6b1ed789d72f88864bf4f050c8d43cc6af3f0689c4c5fe1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>bandwidth 133.0 GHz</topic><topic>CB topology</topic><topic>circuit feedback</topic><topic>Circuits and systems</topic><topic>common base topology</topic><topic>common emitter shunt–shunt feedback topology</topic><topic>eye diagram measurements</topic><topic>fibre optical interconnect systems</topic><topic>frequency 1.15 THz</topic><topic>frequency 520.0 GHz</topic><topic>frequency domains</topic><topic>frequency response</topic><topic>frequency‐domain analysis</topic><topic>heterojunction bipolar transistors</topic><topic>III‐V semiconductors</topic><topic>indium compounds</topic><topic>indium phosphide double heterojunction bipolar transistor technology</topic><topic>InP</topic><topic>input impedance</topic><topic>microwave photonics</topic><topic>operational amplifiers</topic><topic>optical fibre amplifiers</topic><topic>optical interconnections</topic><topic>power 25.5 mW</topic><topic>power 32.3 mW</topic><topic>power consumption</topic><topic>size 130.0 nm</topic><topic>submillimetre wave amplifiers</topic><topic>submillimetre wave transistors</topic><topic>TIA design</topic><topic>time domains</topic><topic>time‐domain analysis</topic><topic>transimpedance amplifier circuits</topic><topic>transimpedance gain</topic><topic>wide band gap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giannakopoulos, S</creatorcontrib><creatorcontrib>He, Z</creatorcontrib><creatorcontrib>Darwazeh, I</creatorcontrib><creatorcontrib>Zirath, H</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Giannakopoulos, S</au><au>He, Z</au><au>Darwazeh, I</au><au>Zirath, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transimpedance amplifiers with 133 GHz bandwidth on 130 nm indium phosphide double heterojunction bipolar transistors</atitle><jtitle>Electronics letters</jtitle><date>2019-05-02</date><risdate>2019</risdate><volume>55</volume><issue>9</issue><spage>521</spage><epage>523</epage><pages>521-523</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><abstract>In this work, the authors present two transimpedance amplifier (TIA) circuits designed for fibre optical interconnect systems. They compare a common base (CB) topology with a common emitter (CE) shunt–shunt feedback topology in terms of frequency response, power consumption, noise, and input impedance. The two TIAs are designed on a 130 nm indium phosphide double heterojunction bipolar transistor technology from Teledyne Scientific Company (TSC) with an ft/fmax of 520 GHz/1.15 THz and are measured in the frequency and time domains. They exhibit a transimpedance gain of 42 dBΩ with a 133 GHz bandwidth, the highest bandwidth reported in the literature and power consumption of 32.3 mW for the CB and 25.5 mW for the CE. Eye diagram measurements were conducted up to 64 Gbps and input referred noise density was measured at $30.2\, {\rm pA}/\sqrt {{\rm Hz}} $30.2pA/Hz for the CB and $13.9\, {\rm pA}/\sqrt {{\rm Hz}} $13.9pA/Hz for the CE.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2018.8135</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0003-2846-9479</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0013-5194 |
ispartof | Electronics letters, 2019-05, Vol.55 (9), p.521-523 |
issn | 0013-5194 1350-911X 1350-911X |
language | eng |
recordid | cdi_crossref_primary_10_1049_el_2018_8135 |
source | Wiley Online Library Open Access |
subjects | bandwidth 133.0 GHz CB topology circuit feedback Circuits and systems common base topology common emitter shunt–shunt feedback topology eye diagram measurements fibre optical interconnect systems frequency 1.15 THz frequency 520.0 GHz frequency domains frequency response frequency‐domain analysis heterojunction bipolar transistors III‐V semiconductors indium compounds indium phosphide double heterojunction bipolar transistor technology InP input impedance microwave photonics operational amplifiers optical fibre amplifiers optical interconnections power 25.5 mW power 32.3 mW power consumption size 130.0 nm submillimetre wave amplifiers submillimetre wave transistors TIA design time domains time‐domain analysis transimpedance amplifier circuits transimpedance gain wide band gap semiconductors |
title | Transimpedance amplifiers with 133 GHz bandwidth on 130 nm indium phosphide double heterojunction bipolar transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transimpedance%20amplifiers%20with%20133%20GHz%20bandwidth%20on%20130%20nm%20indium%20phosphide%20double%20heterojunction%20bipolar%20transistors&rft.jtitle=Electronics%20letters&rft.au=Giannakopoulos,%20S&rft.date=2019-05-02&rft.volume=55&rft.issue=9&rft.spage=521&rft.epage=523&rft.pages=521-523&rft.issn=0013-5194&rft.eissn=1350-911X&rft_id=info:doi/10.1049/el.2018.8135&rft_dat=%3Cwiley_24P%3EELL2BF06370%3C/wiley_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |