Transimpedance amplifiers with 133 GHz bandwidth on 130 nm indium phosphide double heterojunction bipolar transistors

In this work, the authors present two transimpedance amplifier (TIA) circuits designed for fibre optical interconnect systems. They compare a common base (CB) topology with a common emitter (CE) shunt–shunt feedback topology in terms of frequency response, power consumption, noise, and input impedan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2019-05, Vol.55 (9), p.521-523
Hauptverfasser: Giannakopoulos, S, He, Z, Darwazeh, I, Zirath, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 523
container_issue 9
container_start_page 521
container_title Electronics letters
container_volume 55
creator Giannakopoulos, S
He, Z
Darwazeh, I
Zirath, H
description In this work, the authors present two transimpedance amplifier (TIA) circuits designed for fibre optical interconnect systems. They compare a common base (CB) topology with a common emitter (CE) shunt–shunt feedback topology in terms of frequency response, power consumption, noise, and input impedance. The two TIAs are designed on a 130 nm indium phosphide double heterojunction bipolar transistor technology from Teledyne Scientific Company (TSC) with an ft/fmax of 520 GHz/1.15 THz and are measured in the frequency and time domains. They exhibit a transimpedance gain of 42 dBΩ with a 133 GHz bandwidth, the highest bandwidth reported in the literature and power consumption of 32.3 mW for the CB and 25.5 mW for the CE. Eye diagram measurements were conducted up to 64 Gbps and input referred noise density was measured at $30.2\, {\rm pA}/\sqrt {{\rm Hz}} $30.2pA/Hz for the CB and $13.9\, {\rm pA}/\sqrt {{\rm Hz}} $13.9pA/Hz for the CE.
doi_str_mv 10.1049/el.2018.8135
format Article
fullrecord <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1049_el_2018_8135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ELL2BF06370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4570-79a57772e4420b3c6b1ed789d72f88864bf4f050c8d43cc6af3f0689c4c5fe1a3</originalsourceid><addsrcrecordid>eNp9kc-L1TAQgIMo-Njdm39ADh482LeTJm3Soy77Q3jgwRW8hTSZ0CxtU5KWx_rXm-cT8bB4mcDwzTeTGULeMdgzEN01jvsamNorxptXZFciVB1jP16THQDjVcM68ZZc5Rx6YIKJFgTbke0xmTmHaUFnZovUTMsYfMCU6TGsA2Wc0_uHn7Q3szsGVzJxLkmg80TD7MI20WWIeRmCQ-ri1o9IB1wxxadttmsodB-WOJpE19-d8hpTviRvvBkzXv15L8j3u9vHm4fq8PX-y82nQ2VFI6GSnWmklDUKUUPPbdszdFJ1TtZeKdWK3gsPDVjlBLe2NZ57aFVnhW08MsMvyLezNx9x2Xq9pDCZ9KyjCTphRpPsoO1gxql8WGfUnfdtbWupyxZBC25arbwVWjjhQFlvuT1ZP56tNsWcE_q_Xgb6dAuNoz7d4mRpCt6c8WMY8fm_rL49HOrPd9ByCaXu_bku4Kqf4pbmsqpC_IMvzhfswwvYi5P8AiolpvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transimpedance amplifiers with 133 GHz bandwidth on 130 nm indium phosphide double heterojunction bipolar transistors</title><source>Wiley Online Library Open Access</source><creator>Giannakopoulos, S ; He, Z ; Darwazeh, I ; Zirath, H</creator><creatorcontrib>Giannakopoulos, S ; He, Z ; Darwazeh, I ; Zirath, H</creatorcontrib><description>In this work, the authors present two transimpedance amplifier (TIA) circuits designed for fibre optical interconnect systems. They compare a common base (CB) topology with a common emitter (CE) shunt–shunt feedback topology in terms of frequency response, power consumption, noise, and input impedance. The two TIAs are designed on a 130 nm indium phosphide double heterojunction bipolar transistor technology from Teledyne Scientific Company (TSC) with an ft/fmax of 520 GHz/1.15 THz and are measured in the frequency and time domains. They exhibit a transimpedance gain of 42 dBΩ with a 133 GHz bandwidth, the highest bandwidth reported in the literature and power consumption of 32.3 mW for the CB and 25.5 mW for the CE. Eye diagram measurements were conducted up to 64 Gbps and input referred noise density was measured at $30.2\, {\rm pA}/\sqrt {{\rm Hz}} $30.2pA/Hz for the CB and $13.9\, {\rm pA}/\sqrt {{\rm Hz}} $13.9pA/Hz for the CE.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2018.8135</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>bandwidth 133.0 GHz ; CB topology ; circuit feedback ; Circuits and systems ; common base topology ; common emitter shunt–shunt feedback topology ; eye diagram measurements ; fibre optical interconnect systems ; frequency 1.15 THz ; frequency 520.0 GHz ; frequency domains ; frequency response ; frequency‐domain analysis ; heterojunction bipolar transistors ; III‐V semiconductors ; indium compounds ; indium phosphide double heterojunction bipolar transistor technology ; InP ; input impedance ; microwave photonics ; operational amplifiers ; optical fibre amplifiers ; optical interconnections ; power 25.5 mW ; power 32.3 mW ; power consumption ; size 130.0 nm ; submillimetre wave amplifiers ; submillimetre wave transistors ; TIA design ; time domains ; time‐domain analysis ; transimpedance amplifier circuits ; transimpedance gain ; wide band gap semiconductors</subject><ispartof>Electronics letters, 2019-05, Vol.55 (9), p.521-523</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4570-79a57772e4420b3c6b1ed789d72f88864bf4f050c8d43cc6af3f0689c4c5fe1a3</citedby><cites>FETCH-LOGICAL-c4570-79a57772e4420b3c6b1ed789d72f88864bf4f050c8d43cc6af3f0689c4c5fe1a3</cites><orcidid>0000-0003-2846-9479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2018.8135$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2018.8135$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,11543,27903,27904,45553,45554,46030,46454</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2018.8135$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://research.chalmers.se/publication/511883$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Giannakopoulos, S</creatorcontrib><creatorcontrib>He, Z</creatorcontrib><creatorcontrib>Darwazeh, I</creatorcontrib><creatorcontrib>Zirath, H</creatorcontrib><title>Transimpedance amplifiers with 133 GHz bandwidth on 130 nm indium phosphide double heterojunction bipolar transistors</title><title>Electronics letters</title><description>In this work, the authors present two transimpedance amplifier (TIA) circuits designed for fibre optical interconnect systems. They compare a common base (CB) topology with a common emitter (CE) shunt–shunt feedback topology in terms of frequency response, power consumption, noise, and input impedance. The two TIAs are designed on a 130 nm indium phosphide double heterojunction bipolar transistor technology from Teledyne Scientific Company (TSC) with an ft/fmax of 520 GHz/1.15 THz and are measured in the frequency and time domains. They exhibit a transimpedance gain of 42 dBΩ with a 133 GHz bandwidth, the highest bandwidth reported in the literature and power consumption of 32.3 mW for the CB and 25.5 mW for the CE. Eye diagram measurements were conducted up to 64 Gbps and input referred noise density was measured at $30.2\, {\rm pA}/\sqrt {{\rm Hz}} $30.2pA/Hz for the CB and $13.9\, {\rm pA}/\sqrt {{\rm Hz}} $13.9pA/Hz for the CE.</description><subject>bandwidth 133.0 GHz</subject><subject>CB topology</subject><subject>circuit feedback</subject><subject>Circuits and systems</subject><subject>common base topology</subject><subject>common emitter shunt–shunt feedback topology</subject><subject>eye diagram measurements</subject><subject>fibre optical interconnect systems</subject><subject>frequency 1.15 THz</subject><subject>frequency 520.0 GHz</subject><subject>frequency domains</subject><subject>frequency response</subject><subject>frequency‐domain analysis</subject><subject>heterojunction bipolar transistors</subject><subject>III‐V semiconductors</subject><subject>indium compounds</subject><subject>indium phosphide double heterojunction bipolar transistor technology</subject><subject>InP</subject><subject>input impedance</subject><subject>microwave photonics</subject><subject>operational amplifiers</subject><subject>optical fibre amplifiers</subject><subject>optical interconnections</subject><subject>power 25.5 mW</subject><subject>power 32.3 mW</subject><subject>power consumption</subject><subject>size 130.0 nm</subject><subject>submillimetre wave amplifiers</subject><subject>submillimetre wave transistors</subject><subject>TIA design</subject><subject>time domains</subject><subject>time‐domain analysis</subject><subject>transimpedance amplifier circuits</subject><subject>transimpedance gain</subject><subject>wide band gap semiconductors</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc-L1TAQgIMo-Njdm39ADh482LeTJm3Soy77Q3jgwRW8hTSZ0CxtU5KWx_rXm-cT8bB4mcDwzTeTGULeMdgzEN01jvsamNorxptXZFciVB1jP16THQDjVcM68ZZc5Rx6YIKJFgTbke0xmTmHaUFnZovUTMsYfMCU6TGsA2Wc0_uHn7Q3szsGVzJxLkmg80TD7MI20WWIeRmCQ-ri1o9IB1wxxadttmsodB-WOJpE19-d8hpTviRvvBkzXv15L8j3u9vHm4fq8PX-y82nQ2VFI6GSnWmklDUKUUPPbdszdFJ1TtZeKdWK3gsPDVjlBLe2NZ57aFVnhW08MsMvyLezNx9x2Xq9pDCZ9KyjCTphRpPsoO1gxql8WGfUnfdtbWupyxZBC25arbwVWjjhQFlvuT1ZP56tNsWcE_q_Xgb6dAuNoz7d4mRpCt6c8WMY8fm_rL49HOrPd9ByCaXu_bku4Kqf4pbmsqpC_IMvzhfswwvYi5P8AiolpvA</recordid><startdate>20190502</startdate><enddate>20190502</enddate><creator>Giannakopoulos, S</creator><creator>He, Z</creator><creator>Darwazeh, I</creator><creator>Zirath, H</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1S</scope><orcidid>https://orcid.org/0000-0003-2846-9479</orcidid></search><sort><creationdate>20190502</creationdate><title>Transimpedance amplifiers with 133 GHz bandwidth on 130 nm indium phosphide double heterojunction bipolar transistors</title><author>Giannakopoulos, S ; He, Z ; Darwazeh, I ; Zirath, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4570-79a57772e4420b3c6b1ed789d72f88864bf4f050c8d43cc6af3f0689c4c5fe1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>bandwidth 133.0 GHz</topic><topic>CB topology</topic><topic>circuit feedback</topic><topic>Circuits and systems</topic><topic>common base topology</topic><topic>common emitter shunt–shunt feedback topology</topic><topic>eye diagram measurements</topic><topic>fibre optical interconnect systems</topic><topic>frequency 1.15 THz</topic><topic>frequency 520.0 GHz</topic><topic>frequency domains</topic><topic>frequency response</topic><topic>frequency‐domain analysis</topic><topic>heterojunction bipolar transistors</topic><topic>III‐V semiconductors</topic><topic>indium compounds</topic><topic>indium phosphide double heterojunction bipolar transistor technology</topic><topic>InP</topic><topic>input impedance</topic><topic>microwave photonics</topic><topic>operational amplifiers</topic><topic>optical fibre amplifiers</topic><topic>optical interconnections</topic><topic>power 25.5 mW</topic><topic>power 32.3 mW</topic><topic>power consumption</topic><topic>size 130.0 nm</topic><topic>submillimetre wave amplifiers</topic><topic>submillimetre wave transistors</topic><topic>TIA design</topic><topic>time domains</topic><topic>time‐domain analysis</topic><topic>transimpedance amplifier circuits</topic><topic>transimpedance gain</topic><topic>wide band gap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giannakopoulos, S</creatorcontrib><creatorcontrib>He, Z</creatorcontrib><creatorcontrib>Darwazeh, I</creatorcontrib><creatorcontrib>Zirath, H</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Giannakopoulos, S</au><au>He, Z</au><au>Darwazeh, I</au><au>Zirath, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transimpedance amplifiers with 133 GHz bandwidth on 130 nm indium phosphide double heterojunction bipolar transistors</atitle><jtitle>Electronics letters</jtitle><date>2019-05-02</date><risdate>2019</risdate><volume>55</volume><issue>9</issue><spage>521</spage><epage>523</epage><pages>521-523</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><abstract>In this work, the authors present two transimpedance amplifier (TIA) circuits designed for fibre optical interconnect systems. They compare a common base (CB) topology with a common emitter (CE) shunt–shunt feedback topology in terms of frequency response, power consumption, noise, and input impedance. The two TIAs are designed on a 130 nm indium phosphide double heterojunction bipolar transistor technology from Teledyne Scientific Company (TSC) with an ft/fmax of 520 GHz/1.15 THz and are measured in the frequency and time domains. They exhibit a transimpedance gain of 42 dBΩ with a 133 GHz bandwidth, the highest bandwidth reported in the literature and power consumption of 32.3 mW for the CB and 25.5 mW for the CE. Eye diagram measurements were conducted up to 64 Gbps and input referred noise density was measured at $30.2\, {\rm pA}/\sqrt {{\rm Hz}} $30.2pA/Hz for the CB and $13.9\, {\rm pA}/\sqrt {{\rm Hz}} $13.9pA/Hz for the CE.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2018.8135</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0003-2846-9479</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0013-5194
ispartof Electronics letters, 2019-05, Vol.55 (9), p.521-523
issn 0013-5194
1350-911X
1350-911X
language eng
recordid cdi_crossref_primary_10_1049_el_2018_8135
source Wiley Online Library Open Access
subjects bandwidth 133.0 GHz
CB topology
circuit feedback
Circuits and systems
common base topology
common emitter shunt–shunt feedback topology
eye diagram measurements
fibre optical interconnect systems
frequency 1.15 THz
frequency 520.0 GHz
frequency domains
frequency response
frequency‐domain analysis
heterojunction bipolar transistors
III‐V semiconductors
indium compounds
indium phosphide double heterojunction bipolar transistor technology
InP
input impedance
microwave photonics
operational amplifiers
optical fibre amplifiers
optical interconnections
power 25.5 mW
power 32.3 mW
power consumption
size 130.0 nm
submillimetre wave amplifiers
submillimetre wave transistors
TIA design
time domains
time‐domain analysis
transimpedance amplifier circuits
transimpedance gain
wide band gap semiconductors
title Transimpedance amplifiers with 133 GHz bandwidth on 130 nm indium phosphide double heterojunction bipolar transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transimpedance%20amplifiers%20with%20133%20GHz%20bandwidth%20on%20130%20nm%20indium%20phosphide%20double%20heterojunction%20bipolar%20transistors&rft.jtitle=Electronics%20letters&rft.au=Giannakopoulos,%20S&rft.date=2019-05-02&rft.volume=55&rft.issue=9&rft.spage=521&rft.epage=523&rft.pages=521-523&rft.issn=0013-5194&rft.eissn=1350-911X&rft_id=info:doi/10.1049/el.2018.8135&rft_dat=%3Cwiley_24P%3EELL2BF06370%3C/wiley_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true