Adaptive quantum genetic algorithm for task sequence planning of complex assembly systems

Task sequence planning (TSP) is the key factor to the efficiency, stableness, and cost of a complex assembly system. To address the issue, an adaptive quantum genetic algorithm based on artificial potential field and gradient of object function is proposed to optimise the solving process, and to obt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics letters 2018-07, Vol.54 (14), p.870-872
Hauptverfasser: Zhang, Linbin, Lv, Huanpei, Tan, Dapeng, Xu, Fang, Chen, Jiaoliao, Bao, Guanjun, Cai, Shibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 872
container_issue 14
container_start_page 870
container_title Electronics letters
container_volume 54
creator Zhang, Linbin
Lv, Huanpei
Tan, Dapeng
Xu, Fang
Chen, Jiaoliao
Bao, Guanjun
Cai, Shibo
description Task sequence planning (TSP) is the key factor to the efficiency, stableness, and cost of a complex assembly system. To address the issue, an adaptive quantum genetic algorithm based on artificial potential field and gradient of object function is proposed to optimise the solving process, and to obtain the optimal TSP scheme. The simulation results indicate that the proposed algorithm can perform higher efficiency and stableness than the previously reported methods.
doi_str_mv 10.1049/el.2018.0609
format Article
fullrecord <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1049_el_2018_0609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ELL2BF05787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3817-98b6f9c2a5936f88c737e9a5767d094e6fcc612aa7e74de17d9dd5dcf2b15853</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQF3fgBHhgYSLGTOI7HUrWAVImlA0yWY5-LwflonAD596QqA0PFdMvznu5ehK4omVGSijvws5jQfEYyIk7QhCaMRILSl1M0IYQmEaMiPUfTEFxBaErTjKR0gl7nRjWd-wS861XV9SXeQgWd01j5bd267q3Etm5xp8IHDrDrodKAG6-qylVbXFus67Lx8I1VCFAWfsBhCB2U4RKdWeUDTH_nBdqslpvFY7R-fnhazNeRTnLKI5EXmRU6Vkwkmc1zzRMOQjGecUNECpnVOqOxUhx4aoByI4xhRtu4oCxnyQW6PazVbR1CC1Y2rStVO0hK5L4YCV7ui5H7YkbODvzLeRj-tXK5Xsf3K8J4zsfc9SHnoJPvdd9W40-j-MMbY0d2c4QdveQHOnyAnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive quantum genetic algorithm for task sequence planning of complex assembly systems</title><source>Wiley Online Library Open Access</source><creator>Zhang, Linbin ; Lv, Huanpei ; Tan, Dapeng ; Xu, Fang ; Chen, Jiaoliao ; Bao, Guanjun ; Cai, Shibo</creator><creatorcontrib>Zhang, Linbin ; Lv, Huanpei ; Tan, Dapeng ; Xu, Fang ; Chen, Jiaoliao ; Bao, Guanjun ; Cai, Shibo</creatorcontrib><description>Task sequence planning (TSP) is the key factor to the efficiency, stableness, and cost of a complex assembly system. To address the issue, an adaptive quantum genetic algorithm based on artificial potential field and gradient of object function is proposed to optimise the solving process, and to obtain the optimal TSP scheme. The simulation results indicate that the proposed algorithm can perform higher efficiency and stableness than the previously reported methods.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2018.0609</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>adaptive quantum genetic algorithm ; assembling ; complex assembly system ; Control engineering ; genetic algorithms ; optimal TSP scheme ; planning ; task sequence planning</subject><ispartof>Electronics letters, 2018-07, Vol.54 (14), p.870-872</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3817-98b6f9c2a5936f88c737e9a5767d094e6fcc612aa7e74de17d9dd5dcf2b15853</citedby><cites>FETCH-LOGICAL-c3817-98b6f9c2a5936f88c737e9a5767d094e6fcc612aa7e74de17d9dd5dcf2b15853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2018.0609$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2018.0609$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2018.0609$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Zhang, Linbin</creatorcontrib><creatorcontrib>Lv, Huanpei</creatorcontrib><creatorcontrib>Tan, Dapeng</creatorcontrib><creatorcontrib>Xu, Fang</creatorcontrib><creatorcontrib>Chen, Jiaoliao</creatorcontrib><creatorcontrib>Bao, Guanjun</creatorcontrib><creatorcontrib>Cai, Shibo</creatorcontrib><title>Adaptive quantum genetic algorithm for task sequence planning of complex assembly systems</title><title>Electronics letters</title><description>Task sequence planning (TSP) is the key factor to the efficiency, stableness, and cost of a complex assembly system. To address the issue, an adaptive quantum genetic algorithm based on artificial potential field and gradient of object function is proposed to optimise the solving process, and to obtain the optimal TSP scheme. The simulation results indicate that the proposed algorithm can perform higher efficiency and stableness than the previously reported methods.</description><subject>adaptive quantum genetic algorithm</subject><subject>assembling</subject><subject>complex assembly system</subject><subject>Control engineering</subject><subject>genetic algorithms</subject><subject>optimal TSP scheme</subject><subject>planning</subject><subject>task sequence planning</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQF3fgBHhgYSLGTOI7HUrWAVImlA0yWY5-LwflonAD596QqA0PFdMvznu5ehK4omVGSijvws5jQfEYyIk7QhCaMRILSl1M0IYQmEaMiPUfTEFxBaErTjKR0gl7nRjWd-wS861XV9SXeQgWd01j5bd267q3Etm5xp8IHDrDrodKAG6-qylVbXFus67Lx8I1VCFAWfsBhCB2U4RKdWeUDTH_nBdqslpvFY7R-fnhazNeRTnLKI5EXmRU6Vkwkmc1zzRMOQjGecUNECpnVOqOxUhx4aoByI4xhRtu4oCxnyQW6PazVbR1CC1Y2rStVO0hK5L4YCV7ui5H7YkbODvzLeRj-tXK5Xsf3K8J4zsfc9SHnoJPvdd9W40-j-MMbY0d2c4QdveQHOnyAnA</recordid><startdate>20180712</startdate><enddate>20180712</enddate><creator>Zhang, Linbin</creator><creator>Lv, Huanpei</creator><creator>Tan, Dapeng</creator><creator>Xu, Fang</creator><creator>Chen, Jiaoliao</creator><creator>Bao, Guanjun</creator><creator>Cai, Shibo</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180712</creationdate><title>Adaptive quantum genetic algorithm for task sequence planning of complex assembly systems</title><author>Zhang, Linbin ; Lv, Huanpei ; Tan, Dapeng ; Xu, Fang ; Chen, Jiaoliao ; Bao, Guanjun ; Cai, Shibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3817-98b6f9c2a5936f88c737e9a5767d094e6fcc612aa7e74de17d9dd5dcf2b15853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>adaptive quantum genetic algorithm</topic><topic>assembling</topic><topic>complex assembly system</topic><topic>Control engineering</topic><topic>genetic algorithms</topic><topic>optimal TSP scheme</topic><topic>planning</topic><topic>task sequence planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Linbin</creatorcontrib><creatorcontrib>Lv, Huanpei</creatorcontrib><creatorcontrib>Tan, Dapeng</creatorcontrib><creatorcontrib>Xu, Fang</creatorcontrib><creatorcontrib>Chen, Jiaoliao</creatorcontrib><creatorcontrib>Bao, Guanjun</creatorcontrib><creatorcontrib>Cai, Shibo</creatorcontrib><collection>CrossRef</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Linbin</au><au>Lv, Huanpei</au><au>Tan, Dapeng</au><au>Xu, Fang</au><au>Chen, Jiaoliao</au><au>Bao, Guanjun</au><au>Cai, Shibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive quantum genetic algorithm for task sequence planning of complex assembly systems</atitle><jtitle>Electronics letters</jtitle><date>2018-07-12</date><risdate>2018</risdate><volume>54</volume><issue>14</issue><spage>870</spage><epage>872</epage><pages>870-872</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><abstract>Task sequence planning (TSP) is the key factor to the efficiency, stableness, and cost of a complex assembly system. To address the issue, an adaptive quantum genetic algorithm based on artificial potential field and gradient of object function is proposed to optimise the solving process, and to obtain the optimal TSP scheme. The simulation results indicate that the proposed algorithm can perform higher efficiency and stableness than the previously reported methods.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2018.0609</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0013-5194
ispartof Electronics letters, 2018-07, Vol.54 (14), p.870-872
issn 0013-5194
1350-911X
1350-911X
language eng
recordid cdi_crossref_primary_10_1049_el_2018_0609
source Wiley Online Library Open Access
subjects adaptive quantum genetic algorithm
assembling
complex assembly system
Control engineering
genetic algorithms
optimal TSP scheme
planning
task sequence planning
title Adaptive quantum genetic algorithm for task sequence planning of complex assembly systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A31%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20quantum%20genetic%20algorithm%20for%20task%20sequence%20planning%20of%20complex%20assembly%20systems&rft.jtitle=Electronics%20letters&rft.au=Zhang,%20Linbin&rft.date=2018-07-12&rft.volume=54&rft.issue=14&rft.spage=870&rft.epage=872&rft.pages=870-872&rft.issn=0013-5194&rft.eissn=1350-911X&rft_id=info:doi/10.1049/el.2018.0609&rft_dat=%3Cwiley_24P%3EELL2BF05787%3C/wiley_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true