Pseudo-random Gaussian distribution through optimised LFSR permutations
Efficient hardware solutions to generate Gaussian-distributed random numbers are required in many applications. Linear feedback shift registers (LFSRs) are a low-complexity implementation of an approximated uniform pseudo-random distribution: multiple LFSRs can be used in combination to approximate...
Gespeichert in:
Veröffentlicht in: | Electronics letters 2015-12, Vol.51 (25), p.2098-2100 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2100 |
---|---|
container_issue | 25 |
container_start_page | 2098 |
container_title | Electronics letters |
container_volume | 51 |
creator | Condo, C Gross, W.J |
description | Efficient hardware solutions to generate Gaussian-distributed random numbers are required in many applications. Linear feedback shift registers (LFSRs) are a low-complexity implementation of an approximated uniform pseudo-random distribution: multiple LFSRs can be used in combination to approximate a Gaussian distribution with a low complexity cost. The technique proposed in this work exploits the same principle but relies on a single LFSR and ad-hoc permutations of its bits to obtain an accurate approximation of a Gaussian distribution with low maximum autocorrelation, leading to a very low complexity implementation of a Gaussian pseudo-random number generator. |
doi_str_mv | 10.1049/el.2015.3418 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1049_el_2015_3418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808057390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4144-dd5abecda580379a92e10cdc65a5e0a8972e557baa8610f7f244720e9850193b3</originalsourceid><addsrcrecordid>eNp90D1v2zAQBmAiaIAYjrf8AA0dOlTOnUha4pgathNAQIN8ANkISjzFLGRRJSUU-feV4QDtkHa65cG9dy9jVwhLBKGuqV1mgHLJBRZnbIZcQqoQXz6xGQDyVKISF2wRo6sABYoVCJyx3X2k0fo0mM76Q7Iz4wRMl1gXh-CqcXC-S4Z98OPrPvH94A4ukk3K7eND0lM4jIM5knjJzhvTRlq8zzl73m6e1rdp-X13t74p03qKFKm10lRUWyML4LkyKiOE2tYraSSBKVSekZR5ZUyxQmjyJhMiz4BUIQEVr_icfTnt7YP_OVIc9HRQTW1rOvJj1FhAATLnCib69UTr4GMM1Og-uIMJbxpBHyvT1OpjZfpY2cTlif9yLb391-pNWWbftsCzXPy5yNGgf_gxdNP__4r4_AHdlH9t7m3DfwP6r4c6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808057390</pqid></control><display><type>article</type><title>Pseudo-random Gaussian distribution through optimised LFSR permutations</title><source>Wiley Online Library Open Access</source><creator>Condo, C ; Gross, W.J</creator><creatorcontrib>Condo, C ; Gross, W.J</creatorcontrib><description>Efficient hardware solutions to generate Gaussian-distributed random numbers are required in many applications. Linear feedback shift registers (LFSRs) are a low-complexity implementation of an approximated uniform pseudo-random distribution: multiple LFSRs can be used in combination to approximate a Gaussian distribution with a low complexity cost. The technique proposed in this work exploits the same principle but relies on a single LFSR and ad-hoc permutations of its bits to obtain an accurate approximation of a Gaussian distribution with low maximum autocorrelation, leading to a very low complexity implementation of a Gaussian pseudo-random number generator.</description><identifier>ISSN: 0013-5194</identifier><identifier>ISSN: 1350-911X</identifier><identifier>EISSN: 1350-911X</identifier><identifier>DOI: 10.1049/el.2015.3418</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>ad‐hoc permutations ; approximated uniform pseudorandom distribution ; Approximation ; circuit complexity ; Circuits and systems ; Complexity ; complexity cost ; Gaussian ; Gaussian distribution ; Gaussian pseudorandom number generator ; Gaussian‐distributed random numbers ; Hardware ; LFSR ; Linear feedback shift registers ; low‐complexity implementation ; maximum autocorrelation ; Normal distribution ; optimised LFSR permutations ; Permutations ; pseudorandom Gaussian distribution approximation ; random number generation ; Random numbers ; shift registers</subject><ispartof>Electronics letters, 2015-12, Vol.51 (25), p.2098-2100</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2020 The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4144-dd5abecda580379a92e10cdc65a5e0a8972e557baa8610f7f244720e9850193b3</citedby><cites>FETCH-LOGICAL-c4144-dd5abecda580379a92e10cdc65a5e0a8972e557baa8610f7f244720e9850193b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fel.2015.3418$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fel.2015.3418$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2015.3418$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Condo, C</creatorcontrib><creatorcontrib>Gross, W.J</creatorcontrib><title>Pseudo-random Gaussian distribution through optimised LFSR permutations</title><title>Electronics letters</title><description>Efficient hardware solutions to generate Gaussian-distributed random numbers are required in many applications. Linear feedback shift registers (LFSRs) are a low-complexity implementation of an approximated uniform pseudo-random distribution: multiple LFSRs can be used in combination to approximate a Gaussian distribution with a low complexity cost. The technique proposed in this work exploits the same principle but relies on a single LFSR and ad-hoc permutations of its bits to obtain an accurate approximation of a Gaussian distribution with low maximum autocorrelation, leading to a very low complexity implementation of a Gaussian pseudo-random number generator.</description><subject>ad‐hoc permutations</subject><subject>approximated uniform pseudorandom distribution</subject><subject>Approximation</subject><subject>circuit complexity</subject><subject>Circuits and systems</subject><subject>Complexity</subject><subject>complexity cost</subject><subject>Gaussian</subject><subject>Gaussian distribution</subject><subject>Gaussian pseudorandom number generator</subject><subject>Gaussian‐distributed random numbers</subject><subject>Hardware</subject><subject>LFSR</subject><subject>Linear feedback shift registers</subject><subject>low‐complexity implementation</subject><subject>maximum autocorrelation</subject><subject>Normal distribution</subject><subject>optimised LFSR permutations</subject><subject>Permutations</subject><subject>pseudorandom Gaussian distribution approximation</subject><subject>random number generation</subject><subject>Random numbers</subject><subject>shift registers</subject><issn>0013-5194</issn><issn>1350-911X</issn><issn>1350-911X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp90D1v2zAQBmAiaIAYjrf8AA0dOlTOnUha4pgathNAQIN8ANkISjzFLGRRJSUU-feV4QDtkHa65cG9dy9jVwhLBKGuqV1mgHLJBRZnbIZcQqoQXz6xGQDyVKISF2wRo6sABYoVCJyx3X2k0fo0mM76Q7Iz4wRMl1gXh-CqcXC-S4Z98OPrPvH94A4ukk3K7eND0lM4jIM5knjJzhvTRlq8zzl73m6e1rdp-X13t74p03qKFKm10lRUWyML4LkyKiOE2tYraSSBKVSekZR5ZUyxQmjyJhMiz4BUIQEVr_icfTnt7YP_OVIc9HRQTW1rOvJj1FhAATLnCib69UTr4GMM1Og-uIMJbxpBHyvT1OpjZfpY2cTlif9yLb391-pNWWbftsCzXPy5yNGgf_gxdNP__4r4_AHdlH9t7m3DfwP6r4c6</recordid><startdate>20151210</startdate><enddate>20151210</enddate><creator>Condo, C</creator><creator>Gross, W.J</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20151210</creationdate><title>Pseudo-random Gaussian distribution through optimised LFSR permutations</title><author>Condo, C ; Gross, W.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4144-dd5abecda580379a92e10cdc65a5e0a8972e557baa8610f7f244720e9850193b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ad‐hoc permutations</topic><topic>approximated uniform pseudorandom distribution</topic><topic>Approximation</topic><topic>circuit complexity</topic><topic>Circuits and systems</topic><topic>Complexity</topic><topic>complexity cost</topic><topic>Gaussian</topic><topic>Gaussian distribution</topic><topic>Gaussian pseudorandom number generator</topic><topic>Gaussian‐distributed random numbers</topic><topic>Hardware</topic><topic>LFSR</topic><topic>Linear feedback shift registers</topic><topic>low‐complexity implementation</topic><topic>maximum autocorrelation</topic><topic>Normal distribution</topic><topic>optimised LFSR permutations</topic><topic>Permutations</topic><topic>pseudorandom Gaussian distribution approximation</topic><topic>random number generation</topic><topic>Random numbers</topic><topic>shift registers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Condo, C</creatorcontrib><creatorcontrib>Gross, W.J</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Condo, C</au><au>Gross, W.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudo-random Gaussian distribution through optimised LFSR permutations</atitle><jtitle>Electronics letters</jtitle><date>2015-12-10</date><risdate>2015</risdate><volume>51</volume><issue>25</issue><spage>2098</spage><epage>2100</epage><pages>2098-2100</pages><issn>0013-5194</issn><issn>1350-911X</issn><eissn>1350-911X</eissn><abstract>Efficient hardware solutions to generate Gaussian-distributed random numbers are required in many applications. Linear feedback shift registers (LFSRs) are a low-complexity implementation of an approximated uniform pseudo-random distribution: multiple LFSRs can be used in combination to approximate a Gaussian distribution with a low complexity cost. The technique proposed in this work exploits the same principle but relies on a single LFSR and ad-hoc permutations of its bits to obtain an accurate approximation of a Gaussian distribution with low maximum autocorrelation, leading to a very low complexity implementation of a Gaussian pseudo-random number generator.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/el.2015.3418</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0013-5194 |
ispartof | Electronics letters, 2015-12, Vol.51 (25), p.2098-2100 |
issn | 0013-5194 1350-911X 1350-911X |
language | eng |
recordid | cdi_crossref_primary_10_1049_el_2015_3418 |
source | Wiley Online Library Open Access |
subjects | ad‐hoc permutations approximated uniform pseudorandom distribution Approximation circuit complexity Circuits and systems Complexity complexity cost Gaussian Gaussian distribution Gaussian pseudorandom number generator Gaussian‐distributed random numbers Hardware LFSR Linear feedback shift registers low‐complexity implementation maximum autocorrelation Normal distribution optimised LFSR permutations Permutations pseudorandom Gaussian distribution approximation random number generation Random numbers shift registers |
title | Pseudo-random Gaussian distribution through optimised LFSR permutations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A41%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudo-random%20Gaussian%20distribution%20through%20optimised%20LFSR%20permutations&rft.jtitle=Electronics%20letters&rft.au=Condo,%20C&rft.date=2015-12-10&rft.volume=51&rft.issue=25&rft.spage=2098&rft.epage=2100&rft.pages=2098-2100&rft.issn=0013-5194&rft.eissn=1350-911X&rft_id=info:doi/10.1049/el.2015.3418&rft_dat=%3Cproquest_24P%3E1808057390%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808057390&rft_id=info:pmid/&rfr_iscdi=true |