Robust distributed Nash equilibrium solution for multi‐agent differential graphical games
This paper studies the differential graphical games for linear multi‐agent systems with modelling uncertainties. A robust optimal control policy that seeks the distributed Nash equilibrium solution and guarantees the leader‐following consensus is designed. The weighting matrices rely on modelling un...
Gespeichert in:
Veröffentlicht in: | IET control theory & applications 2024-12, Vol.18 (18), p.2813-2822 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2822 |
---|---|
container_issue | 18 |
container_start_page | 2813 |
container_title | IET control theory & applications |
container_volume | 18 |
creator | Zhang, Shouxu Zhang, Zhuo Cui, Rongxin Yan, Weisheng |
description | This paper studies the differential graphical games for linear multi‐agent systems with modelling uncertainties. A robust optimal control policy that seeks the distributed Nash equilibrium solution and guarantees the leader‐following consensus is designed. The weighting matrices rely on modelling uncertainties, leading to the Nash equilibrium solution, and the solution can be obtained by solving a decoupled algebraic Riccati equation. Simulation studies are finally reported to illustrate the effectiveness of proposed policy.
This paper studies the differential graphical games for linear multi‐agent systems with modelling uncertainties. A robust optimal control policy that seeks the distributed Nash equilibrium solution and guarantees the leader‐following consensus is designed. |
doi_str_mv | 10.1049/cth2.12687 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1049_cth2_12687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CTH212687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1987-baa42f70eb247fc2251a13bf79682d9444ebe048f2e9a2a9ece4dd605a76e9703</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqWw8AWekVJs147jEVVAkSqQUJkYoufkuTFKmmInQt34hH4jX0JDESPTO8O5bziEXHI24Uya66KrxISLNNNHZMS14kmWKnH8x1KekrMY3xhTKpVqRF6fW9vHjpY-dsHbvsOSPkKsKL73vvY2-L6hsa37zrdr6tpAm77u_NfnDla4HnbOYdiTh5quAmwqXwwEDcZzcuKgjnjxe8fk5e52OZsni6f7h9nNIim4yXRiAaRwmqEVUrtCCMWBT63TJs1EaaSUaJHJzAk0IMBggbIsU6ZAp2g0m47J1eFvEdoYA7p8E3wDYZtzlg9Z8iFL_pNlL_OD_OFr3P5j5rPlXBw237O7aC0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust distributed Nash equilibrium solution for multi‐agent differential graphical games</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Zhang, Shouxu ; Zhang, Zhuo ; Cui, Rongxin ; Yan, Weisheng</creator><creatorcontrib>Zhang, Shouxu ; Zhang, Zhuo ; Cui, Rongxin ; Yan, Weisheng</creatorcontrib><description>This paper studies the differential graphical games for linear multi‐agent systems with modelling uncertainties. A robust optimal control policy that seeks the distributed Nash equilibrium solution and guarantees the leader‐following consensus is designed. The weighting matrices rely on modelling uncertainties, leading to the Nash equilibrium solution, and the solution can be obtained by solving a decoupled algebraic Riccati equation. Simulation studies are finally reported to illustrate the effectiveness of proposed policy.
This paper studies the differential graphical games for linear multi‐agent systems with modelling uncertainties. A robust optimal control policy that seeks the distributed Nash equilibrium solution and guarantees the leader‐following consensus is designed.</description><identifier>ISSN: 1751-8644</identifier><identifier>EISSN: 1751-8652</identifier><identifier>DOI: 10.1049/cth2.12687</identifier><language>eng</language><subject>differential games ; distributed control ; multi‐agent systems ; robust control ; uncertain systems</subject><ispartof>IET control theory & applications, 2024-12, Vol.18 (18), p.2813-2822</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1987-baa42f70eb247fc2251a13bf79682d9444ebe048f2e9a2a9ece4dd605a76e9703</cites><orcidid>0000-0002-6789-4411 ; 0000-0003-3634-2494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fcth2.12687$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fcth2.12687$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1416,11560,27922,27923,45572,45573,46050,46474</link.rule.ids></links><search><creatorcontrib>Zhang, Shouxu</creatorcontrib><creatorcontrib>Zhang, Zhuo</creatorcontrib><creatorcontrib>Cui, Rongxin</creatorcontrib><creatorcontrib>Yan, Weisheng</creatorcontrib><title>Robust distributed Nash equilibrium solution for multi‐agent differential graphical games</title><title>IET control theory & applications</title><description>This paper studies the differential graphical games for linear multi‐agent systems with modelling uncertainties. A robust optimal control policy that seeks the distributed Nash equilibrium solution and guarantees the leader‐following consensus is designed. The weighting matrices rely on modelling uncertainties, leading to the Nash equilibrium solution, and the solution can be obtained by solving a decoupled algebraic Riccati equation. Simulation studies are finally reported to illustrate the effectiveness of proposed policy.
This paper studies the differential graphical games for linear multi‐agent systems with modelling uncertainties. A robust optimal control policy that seeks the distributed Nash equilibrium solution and guarantees the leader‐following consensus is designed.</description><subject>differential games</subject><subject>distributed control</subject><subject>multi‐agent systems</subject><subject>robust control</subject><subject>uncertain systems</subject><issn>1751-8644</issn><issn>1751-8652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kLFOwzAURS0EEqWw8AWekVJs147jEVVAkSqQUJkYoufkuTFKmmInQt34hH4jX0JDESPTO8O5bziEXHI24Uya66KrxISLNNNHZMS14kmWKnH8x1KekrMY3xhTKpVqRF6fW9vHjpY-dsHbvsOSPkKsKL73vvY2-L6hsa37zrdr6tpAm77u_NfnDla4HnbOYdiTh5quAmwqXwwEDcZzcuKgjnjxe8fk5e52OZsni6f7h9nNIim4yXRiAaRwmqEVUrtCCMWBT63TJs1EaaSUaJHJzAk0IMBggbIsU6ZAp2g0m47J1eFvEdoYA7p8E3wDYZtzlg9Z8iFL_pNlL_OD_OFr3P5j5rPlXBw237O7aC0</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Zhang, Shouxu</creator><creator>Zhang, Zhuo</creator><creator>Cui, Rongxin</creator><creator>Yan, Weisheng</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6789-4411</orcidid><orcidid>https://orcid.org/0000-0003-3634-2494</orcidid></search><sort><creationdate>202412</creationdate><title>Robust distributed Nash equilibrium solution for multi‐agent differential graphical games</title><author>Zhang, Shouxu ; Zhang, Zhuo ; Cui, Rongxin ; Yan, Weisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1987-baa42f70eb247fc2251a13bf79682d9444ebe048f2e9a2a9ece4dd605a76e9703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>differential games</topic><topic>distributed control</topic><topic>multi‐agent systems</topic><topic>robust control</topic><topic>uncertain systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shouxu</creatorcontrib><creatorcontrib>Zhang, Zhuo</creatorcontrib><creatorcontrib>Cui, Rongxin</creatorcontrib><creatorcontrib>Yan, Weisheng</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>IET control theory & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shouxu</au><au>Zhang, Zhuo</au><au>Cui, Rongxin</au><au>Yan, Weisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust distributed Nash equilibrium solution for multi‐agent differential graphical games</atitle><jtitle>IET control theory & applications</jtitle><date>2024-12</date><risdate>2024</risdate><volume>18</volume><issue>18</issue><spage>2813</spage><epage>2822</epage><pages>2813-2822</pages><issn>1751-8644</issn><eissn>1751-8652</eissn><abstract>This paper studies the differential graphical games for linear multi‐agent systems with modelling uncertainties. A robust optimal control policy that seeks the distributed Nash equilibrium solution and guarantees the leader‐following consensus is designed. The weighting matrices rely on modelling uncertainties, leading to the Nash equilibrium solution, and the solution can be obtained by solving a decoupled algebraic Riccati equation. Simulation studies are finally reported to illustrate the effectiveness of proposed policy.
This paper studies the differential graphical games for linear multi‐agent systems with modelling uncertainties. A robust optimal control policy that seeks the distributed Nash equilibrium solution and guarantees the leader‐following consensus is designed.</abstract><doi>10.1049/cth2.12687</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6789-4411</orcidid><orcidid>https://orcid.org/0000-0003-3634-2494</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8644 |
ispartof | IET control theory & applications, 2024-12, Vol.18 (18), p.2813-2822 |
issn | 1751-8644 1751-8652 |
language | eng |
recordid | cdi_crossref_primary_10_1049_cth2_12687 |
source | DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | differential games distributed control multi‐agent systems robust control uncertain systems |
title | Robust distributed Nash equilibrium solution for multi‐agent differential graphical games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20distributed%20Nash%20equilibrium%20solution%20for%20multi%E2%80%90agent%20differential%20graphical%20games&rft.jtitle=IET%20control%20theory%20&%20applications&rft.au=Zhang,%20Shouxu&rft.date=2024-12&rft.volume=18&rft.issue=18&rft.spage=2813&rft.epage=2822&rft.pages=2813-2822&rft.issn=1751-8644&rft.eissn=1751-8652&rft_id=info:doi/10.1049/cth2.12687&rft_dat=%3Cwiley_cross%3ECTH212687%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |