Robust distributed Nash equilibrium solution for multi‐agent differential graphical games

This paper studies the differential graphical games for linear multi‐agent systems with modelling uncertainties. A robust optimal control policy that seeks the distributed Nash equilibrium solution and guarantees the leader‐following consensus is designed. The weighting matrices rely on modelling un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET control theory & applications 2024-12, Vol.18 (18), p.2813-2822
Hauptverfasser: Zhang, Shouxu, Zhang, Zhuo, Cui, Rongxin, Yan, Weisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2822
container_issue 18
container_start_page 2813
container_title IET control theory & applications
container_volume 18
creator Zhang, Shouxu
Zhang, Zhuo
Cui, Rongxin
Yan, Weisheng
description This paper studies the differential graphical games for linear multi‐agent systems with modelling uncertainties. A robust optimal control policy that seeks the distributed Nash equilibrium solution and guarantees the leader‐following consensus is designed. The weighting matrices rely on modelling uncertainties, leading to the Nash equilibrium solution, and the solution can be obtained by solving a decoupled algebraic Riccati equation. Simulation studies are finally reported to illustrate the effectiveness of proposed policy. This paper studies the differential graphical games for linear multi‐agent systems with modelling uncertainties. A robust optimal control policy that seeks the distributed Nash equilibrium solution and guarantees the leader‐following consensus is designed.
doi_str_mv 10.1049/cth2.12687
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1049_cth2_12687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CTH212687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1987-baa42f70eb247fc2251a13bf79682d9444ebe048f2e9a2a9ece4dd605a76e9703</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqWw8AWekVJs147jEVVAkSqQUJkYoufkuTFKmmInQt34hH4jX0JDESPTO8O5bziEXHI24Uya66KrxISLNNNHZMS14kmWKnH8x1KekrMY3xhTKpVqRF6fW9vHjpY-dsHbvsOSPkKsKL73vvY2-L6hsa37zrdr6tpAm77u_NfnDla4HnbOYdiTh5quAmwqXwwEDcZzcuKgjnjxe8fk5e52OZsni6f7h9nNIim4yXRiAaRwmqEVUrtCCMWBT63TJs1EaaSUaJHJzAk0IMBggbIsU6ZAp2g0m47J1eFvEdoYA7p8E3wDYZtzlg9Z8iFL_pNlL_OD_OFr3P5j5rPlXBw237O7aC0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust distributed Nash equilibrium solution for multi‐agent differential graphical games</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Zhang, Shouxu ; Zhang, Zhuo ; Cui, Rongxin ; Yan, Weisheng</creator><creatorcontrib>Zhang, Shouxu ; Zhang, Zhuo ; Cui, Rongxin ; Yan, Weisheng</creatorcontrib><description>This paper studies the differential graphical games for linear multi‐agent systems with modelling uncertainties. A robust optimal control policy that seeks the distributed Nash equilibrium solution and guarantees the leader‐following consensus is designed. The weighting matrices rely on modelling uncertainties, leading to the Nash equilibrium solution, and the solution can be obtained by solving a decoupled algebraic Riccati equation. Simulation studies are finally reported to illustrate the effectiveness of proposed policy. This paper studies the differential graphical games for linear multi‐agent systems with modelling uncertainties. A robust optimal control policy that seeks the distributed Nash equilibrium solution and guarantees the leader‐following consensus is designed.</description><identifier>ISSN: 1751-8644</identifier><identifier>EISSN: 1751-8652</identifier><identifier>DOI: 10.1049/cth2.12687</identifier><language>eng</language><subject>differential games ; distributed control ; multi‐agent systems ; robust control ; uncertain systems</subject><ispartof>IET control theory &amp; applications, 2024-12, Vol.18 (18), p.2813-2822</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd on behalf of The Institution of Engineering and Technology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1987-baa42f70eb247fc2251a13bf79682d9444ebe048f2e9a2a9ece4dd605a76e9703</cites><orcidid>0000-0002-6789-4411 ; 0000-0003-3634-2494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fcth2.12687$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fcth2.12687$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1416,11560,27922,27923,45572,45573,46050,46474</link.rule.ids></links><search><creatorcontrib>Zhang, Shouxu</creatorcontrib><creatorcontrib>Zhang, Zhuo</creatorcontrib><creatorcontrib>Cui, Rongxin</creatorcontrib><creatorcontrib>Yan, Weisheng</creatorcontrib><title>Robust distributed Nash equilibrium solution for multi‐agent differential graphical games</title><title>IET control theory &amp; applications</title><description>This paper studies the differential graphical games for linear multi‐agent systems with modelling uncertainties. A robust optimal control policy that seeks the distributed Nash equilibrium solution and guarantees the leader‐following consensus is designed. The weighting matrices rely on modelling uncertainties, leading to the Nash equilibrium solution, and the solution can be obtained by solving a decoupled algebraic Riccati equation. Simulation studies are finally reported to illustrate the effectiveness of proposed policy. This paper studies the differential graphical games for linear multi‐agent systems with modelling uncertainties. A robust optimal control policy that seeks the distributed Nash equilibrium solution and guarantees the leader‐following consensus is designed.</description><subject>differential games</subject><subject>distributed control</subject><subject>multi‐agent systems</subject><subject>robust control</subject><subject>uncertain systems</subject><issn>1751-8644</issn><issn>1751-8652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kLFOwzAURS0EEqWw8AWekVJs147jEVVAkSqQUJkYoufkuTFKmmInQt34hH4jX0JDESPTO8O5bziEXHI24Uya66KrxISLNNNHZMS14kmWKnH8x1KekrMY3xhTKpVqRF6fW9vHjpY-dsHbvsOSPkKsKL73vvY2-L6hsa37zrdr6tpAm77u_NfnDla4HnbOYdiTh5quAmwqXwwEDcZzcuKgjnjxe8fk5e52OZsni6f7h9nNIim4yXRiAaRwmqEVUrtCCMWBT63TJs1EaaSUaJHJzAk0IMBggbIsU6ZAp2g0m47J1eFvEdoYA7p8E3wDYZtzlg9Z8iFL_pNlL_OD_OFr3P5j5rPlXBw237O7aC0</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Zhang, Shouxu</creator><creator>Zhang, Zhuo</creator><creator>Cui, Rongxin</creator><creator>Yan, Weisheng</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6789-4411</orcidid><orcidid>https://orcid.org/0000-0003-3634-2494</orcidid></search><sort><creationdate>202412</creationdate><title>Robust distributed Nash equilibrium solution for multi‐agent differential graphical games</title><author>Zhang, Shouxu ; Zhang, Zhuo ; Cui, Rongxin ; Yan, Weisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1987-baa42f70eb247fc2251a13bf79682d9444ebe048f2e9a2a9ece4dd605a76e9703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>differential games</topic><topic>distributed control</topic><topic>multi‐agent systems</topic><topic>robust control</topic><topic>uncertain systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shouxu</creatorcontrib><creatorcontrib>Zhang, Zhuo</creatorcontrib><creatorcontrib>Cui, Rongxin</creatorcontrib><creatorcontrib>Yan, Weisheng</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>IET control theory &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shouxu</au><au>Zhang, Zhuo</au><au>Cui, Rongxin</au><au>Yan, Weisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust distributed Nash equilibrium solution for multi‐agent differential graphical games</atitle><jtitle>IET control theory &amp; applications</jtitle><date>2024-12</date><risdate>2024</risdate><volume>18</volume><issue>18</issue><spage>2813</spage><epage>2822</epage><pages>2813-2822</pages><issn>1751-8644</issn><eissn>1751-8652</eissn><abstract>This paper studies the differential graphical games for linear multi‐agent systems with modelling uncertainties. A robust optimal control policy that seeks the distributed Nash equilibrium solution and guarantees the leader‐following consensus is designed. The weighting matrices rely on modelling uncertainties, leading to the Nash equilibrium solution, and the solution can be obtained by solving a decoupled algebraic Riccati equation. Simulation studies are finally reported to illustrate the effectiveness of proposed policy. This paper studies the differential graphical games for linear multi‐agent systems with modelling uncertainties. A robust optimal control policy that seeks the distributed Nash equilibrium solution and guarantees the leader‐following consensus is designed.</abstract><doi>10.1049/cth2.12687</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6789-4411</orcidid><orcidid>https://orcid.org/0000-0003-3634-2494</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8644
ispartof IET control theory & applications, 2024-12, Vol.18 (18), p.2813-2822
issn 1751-8644
1751-8652
language eng
recordid cdi_crossref_primary_10_1049_cth2_12687
source DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects differential games
distributed control
multi‐agent systems
robust control
uncertain systems
title Robust distributed Nash equilibrium solution for multi‐agent differential graphical games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20distributed%20Nash%20equilibrium%20solution%20for%20multi%E2%80%90agent%20differential%20graphical%20games&rft.jtitle=IET%20control%20theory%20&%20applications&rft.au=Zhang,%20Shouxu&rft.date=2024-12&rft.volume=18&rft.issue=18&rft.spage=2813&rft.epage=2822&rft.pages=2813-2822&rft.issn=1751-8644&rft.eissn=1751-8652&rft_id=info:doi/10.1049/cth2.12687&rft_dat=%3Cwiley_cross%3ECTH212687%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true