Ataxia telangiectasia mutated- and Rad3-related kinase drives both the early and the late DNA-damage response to the monofunctional antitumour alkylator S23906

Numerous anticancer agents and environmental mutagens target DNA. Although all such compounds interfere with the progression of the replication fork and inhibit DNA synthesis, there are marked differences in the DNA-damage response pathways they trigger, and the relative impact of the proximal or th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 2011-07, Vol.437 (1), p.63-73
Hauptverfasser: Soares, Daniele G, Battistella, Aude, Rocca, Céline J, Matuo, Renata, Henriques, João A P, Larsen, Annette K, Escargueil, Alexandre E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 1
container_start_page 63
container_title Biochemical journal
container_volume 437
creator Soares, Daniele G
Battistella, Aude
Rocca, Céline J
Matuo, Renata
Henriques, João A P
Larsen, Annette K
Escargueil, Alexandre E
description Numerous anticancer agents and environmental mutagens target DNA. Although all such compounds interfere with the progression of the replication fork and inhibit DNA synthesis, there are marked differences in the DNA-damage response pathways they trigger, and the relative impact of the proximal or the distal signal transducers on cell survival is mainly lesion-specific. Accordingly, checkpoint kinase inhibitors in current clinical development show synergistic activity with some DNA-targeting agents, but not with others. In the present study, we characterize the DNA-damage response to the antitumour acronycine derivative S23906, which forms monofunctional adducts with guanine residues in the minor groove of DNA. S23906 exposure is accompanied by specific recruitment of RPA (replication protein A) at replication sites and rapid Chk1 activation. In contrast, neither MRN (Mre11-Rad50-Nbs1) nor ATM (ataxia-telangiectasia mutated), contributes to the initial response to S23906. Interestingly, genetic attenuation of ATR (ATM- and Ras3-related) activity inhibits not only the early phosphorylation of histone H2AX and Chk1, but also interferes with the late phosphorylation of Chk2. Moreover, loss of ATR function or pharmacological inhibition of the checkpoint kinases by AZD7762 is accompanied by abrogation of the S-phase arrest and increased sensitivity towards S23906. These findings identify ATR as a central co-ordinator of the DNA-damage response to S23906, and provide a mechanistic rationale for combinations of S23906 and similar agents with checkpoint abrogators.
doi_str_mv 10.1042/BJ20101770
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1042_BJ20101770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21470188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-8fcd79ad35c862a81627148abf7014c2e67e404abef41880f777b861e3bd33423</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EoqWw4QOQ10gG2zGxuyzlrQokHutoEjttaBJXtoPo1_CrOC2P1Whmzh3NvQgdM3rGqODnlw-cMsqkpDtoyISkREmudtGQ8lSQlHI2QAfev1PKBBV0Hw14TzGlhuhrEuCzAhxMDe28MkUAH9umCxCMJhhajZ9BJ8RFIE7wsmrBG6xd9WE8zm1Y4LAw2ICr1xu673oUXz1OiIYG5gY741e2jbJgN_vGtrbs2iJUtoU6ykIVusZ2DkO9XEe1dfiFJ2OaHqK9Empvjn7qCL3dXL9O78js6fZ-OpmRIuE8EFUWWo7jnxeFSjkolnLJhIK8jD5FwU0qTfQOuSlF9E1LKWWuUmaSXCeJ4MkInW7vFs5670yZrVzVgFtnjGZ9ytl_yhE-2cKrLm-M_kN_Y02-AQIKeJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ataxia telangiectasia mutated- and Rad3-related kinase drives both the early and the late DNA-damage response to the monofunctional antitumour alkylator S23906</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Soares, Daniele G ; Battistella, Aude ; Rocca, Céline J ; Matuo, Renata ; Henriques, João A P ; Larsen, Annette K ; Escargueil, Alexandre E</creator><creatorcontrib>Soares, Daniele G ; Battistella, Aude ; Rocca, Céline J ; Matuo, Renata ; Henriques, João A P ; Larsen, Annette K ; Escargueil, Alexandre E</creatorcontrib><description>Numerous anticancer agents and environmental mutagens target DNA. Although all such compounds interfere with the progression of the replication fork and inhibit DNA synthesis, there are marked differences in the DNA-damage response pathways they trigger, and the relative impact of the proximal or the distal signal transducers on cell survival is mainly lesion-specific. Accordingly, checkpoint kinase inhibitors in current clinical development show synergistic activity with some DNA-targeting agents, but not with others. In the present study, we characterize the DNA-damage response to the antitumour acronycine derivative S23906, which forms monofunctional adducts with guanine residues in the minor groove of DNA. S23906 exposure is accompanied by specific recruitment of RPA (replication protein A) at replication sites and rapid Chk1 activation. In contrast, neither MRN (Mre11-Rad50-Nbs1) nor ATM (ataxia-telangiectasia mutated), contributes to the initial response to S23906. Interestingly, genetic attenuation of ATR (ATM- and Ras3-related) activity inhibits not only the early phosphorylation of histone H2AX and Chk1, but also interferes with the late phosphorylation of Chk2. Moreover, loss of ATR function or pharmacological inhibition of the checkpoint kinases by AZD7762 is accompanied by abrogation of the S-phase arrest and increased sensitivity towards S23906. These findings identify ATR as a central co-ordinator of the DNA-damage response to S23906, and provide a mechanistic rationale for combinations of S23906 and similar agents with checkpoint abrogators.</description><identifier>ISSN: 0264-6021</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/BJ20101770</identifier><identifier>PMID: 21470188</identifier><language>eng</language><publisher>England</publisher><subject>Acid Anhydride Hydrolases ; Acronine - analogs &amp; derivatives ; Acronine - pharmacology ; Antineoplastic Agents, Alkylating - pharmacology ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Cycle Proteins - physiology ; Checkpoint Kinase 1 ; Checkpoint Kinase 2 ; DNA Damage ; DNA Repair Enzymes - metabolism ; DNA-Binding Proteins - metabolism ; HeLa Cells ; Histones - metabolism ; Humans ; Microscopy, Fluorescence ; MRE11 Homologue Protein ; Mutation ; Nuclear Proteins - metabolism ; Protein Kinases - metabolism ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Protein Serine-Threonine Kinases - physiology ; Replication Protein A - metabolism ; Thiophenes - pharmacology ; Urea - analogs &amp; derivatives ; Urea - pharmacology</subject><ispartof>Biochemical journal, 2011-07, Vol.437 (1), p.63-73</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-8fcd79ad35c862a81627148abf7014c2e67e404abef41880f777b861e3bd33423</citedby><cites>FETCH-LOGICAL-c322t-8fcd79ad35c862a81627148abf7014c2e67e404abef41880f777b861e3bd33423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21470188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soares, Daniele G</creatorcontrib><creatorcontrib>Battistella, Aude</creatorcontrib><creatorcontrib>Rocca, Céline J</creatorcontrib><creatorcontrib>Matuo, Renata</creatorcontrib><creatorcontrib>Henriques, João A P</creatorcontrib><creatorcontrib>Larsen, Annette K</creatorcontrib><creatorcontrib>Escargueil, Alexandre E</creatorcontrib><title>Ataxia telangiectasia mutated- and Rad3-related kinase drives both the early and the late DNA-damage response to the monofunctional antitumour alkylator S23906</title><title>Biochemical journal</title><addtitle>Biochem J</addtitle><description>Numerous anticancer agents and environmental mutagens target DNA. Although all such compounds interfere with the progression of the replication fork and inhibit DNA synthesis, there are marked differences in the DNA-damage response pathways they trigger, and the relative impact of the proximal or the distal signal transducers on cell survival is mainly lesion-specific. Accordingly, checkpoint kinase inhibitors in current clinical development show synergistic activity with some DNA-targeting agents, but not with others. In the present study, we characterize the DNA-damage response to the antitumour acronycine derivative S23906, which forms monofunctional adducts with guanine residues in the minor groove of DNA. S23906 exposure is accompanied by specific recruitment of RPA (replication protein A) at replication sites and rapid Chk1 activation. In contrast, neither MRN (Mre11-Rad50-Nbs1) nor ATM (ataxia-telangiectasia mutated), contributes to the initial response to S23906. Interestingly, genetic attenuation of ATR (ATM- and Ras3-related) activity inhibits not only the early phosphorylation of histone H2AX and Chk1, but also interferes with the late phosphorylation of Chk2. Moreover, loss of ATR function or pharmacological inhibition of the checkpoint kinases by AZD7762 is accompanied by abrogation of the S-phase arrest and increased sensitivity towards S23906. These findings identify ATR as a central co-ordinator of the DNA-damage response to S23906, and provide a mechanistic rationale for combinations of S23906 and similar agents with checkpoint abrogators.</description><subject>Acid Anhydride Hydrolases</subject><subject>Acronine - analogs &amp; derivatives</subject><subject>Acronine - pharmacology</subject><subject>Antineoplastic Agents, Alkylating - pharmacology</subject><subject>Ataxia Telangiectasia Mutated Proteins</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Cycle Proteins - physiology</subject><subject>Checkpoint Kinase 1</subject><subject>Checkpoint Kinase 2</subject><subject>DNA Damage</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>HeLa Cells</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Microscopy, Fluorescence</subject><subject>MRE11 Homologue Protein</subject><subject>Mutation</subject><subject>Nuclear Proteins - metabolism</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Protein Serine-Threonine Kinases - physiology</subject><subject>Replication Protein A - metabolism</subject><subject>Thiophenes - pharmacology</subject><subject>Urea - analogs &amp; derivatives</subject><subject>Urea - pharmacology</subject><issn>0264-6021</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkMtOwzAQRS0EoqWw4QOQ10gG2zGxuyzlrQokHutoEjttaBJXtoPo1_CrOC2P1Whmzh3NvQgdM3rGqODnlw-cMsqkpDtoyISkREmudtGQ8lSQlHI2QAfev1PKBBV0Hw14TzGlhuhrEuCzAhxMDe28MkUAH9umCxCMJhhajZ9BJ8RFIE7wsmrBG6xd9WE8zm1Y4LAw2ICr1xu673oUXz1OiIYG5gY741e2jbJgN_vGtrbs2iJUtoU6ykIVusZ2DkO9XEe1dfiFJ2OaHqK9Empvjn7qCL3dXL9O78js6fZ-OpmRIuE8EFUWWo7jnxeFSjkolnLJhIK8jD5FwU0qTfQOuSlF9E1LKWWuUmaSXCeJ4MkInW7vFs5670yZrVzVgFtnjGZ9ytl_yhE-2cKrLm-M_kN_Y02-AQIKeJI</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Soares, Daniele G</creator><creator>Battistella, Aude</creator><creator>Rocca, Céline J</creator><creator>Matuo, Renata</creator><creator>Henriques, João A P</creator><creator>Larsen, Annette K</creator><creator>Escargueil, Alexandre E</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110701</creationdate><title>Ataxia telangiectasia mutated- and Rad3-related kinase drives both the early and the late DNA-damage response to the monofunctional antitumour alkylator S23906</title><author>Soares, Daniele G ; Battistella, Aude ; Rocca, Céline J ; Matuo, Renata ; Henriques, João A P ; Larsen, Annette K ; Escargueil, Alexandre E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-8fcd79ad35c862a81627148abf7014c2e67e404abef41880f777b861e3bd33423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acid Anhydride Hydrolases</topic><topic>Acronine - analogs &amp; derivatives</topic><topic>Acronine - pharmacology</topic><topic>Antineoplastic Agents, Alkylating - pharmacology</topic><topic>Ataxia Telangiectasia Mutated Proteins</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Cycle Proteins - physiology</topic><topic>Checkpoint Kinase 1</topic><topic>Checkpoint Kinase 2</topic><topic>DNA Damage</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>HeLa Cells</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Microscopy, Fluorescence</topic><topic>MRE11 Homologue Protein</topic><topic>Mutation</topic><topic>Nuclear Proteins - metabolism</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Protein Serine-Threonine Kinases - physiology</topic><topic>Replication Protein A - metabolism</topic><topic>Thiophenes - pharmacology</topic><topic>Urea - analogs &amp; derivatives</topic><topic>Urea - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soares, Daniele G</creatorcontrib><creatorcontrib>Battistella, Aude</creatorcontrib><creatorcontrib>Rocca, Céline J</creatorcontrib><creatorcontrib>Matuo, Renata</creatorcontrib><creatorcontrib>Henriques, João A P</creatorcontrib><creatorcontrib>Larsen, Annette K</creatorcontrib><creatorcontrib>Escargueil, Alexandre E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Biochemical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soares, Daniele G</au><au>Battistella, Aude</au><au>Rocca, Céline J</au><au>Matuo, Renata</au><au>Henriques, João A P</au><au>Larsen, Annette K</au><au>Escargueil, Alexandre E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ataxia telangiectasia mutated- and Rad3-related kinase drives both the early and the late DNA-damage response to the monofunctional antitumour alkylator S23906</atitle><jtitle>Biochemical journal</jtitle><addtitle>Biochem J</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>437</volume><issue>1</issue><spage>63</spage><epage>73</epage><pages>63-73</pages><issn>0264-6021</issn><eissn>1470-8728</eissn><abstract>Numerous anticancer agents and environmental mutagens target DNA. Although all such compounds interfere with the progression of the replication fork and inhibit DNA synthesis, there are marked differences in the DNA-damage response pathways they trigger, and the relative impact of the proximal or the distal signal transducers on cell survival is mainly lesion-specific. Accordingly, checkpoint kinase inhibitors in current clinical development show synergistic activity with some DNA-targeting agents, but not with others. In the present study, we characterize the DNA-damage response to the antitumour acronycine derivative S23906, which forms monofunctional adducts with guanine residues in the minor groove of DNA. S23906 exposure is accompanied by specific recruitment of RPA (replication protein A) at replication sites and rapid Chk1 activation. In contrast, neither MRN (Mre11-Rad50-Nbs1) nor ATM (ataxia-telangiectasia mutated), contributes to the initial response to S23906. Interestingly, genetic attenuation of ATR (ATM- and Ras3-related) activity inhibits not only the early phosphorylation of histone H2AX and Chk1, but also interferes with the late phosphorylation of Chk2. Moreover, loss of ATR function or pharmacological inhibition of the checkpoint kinases by AZD7762 is accompanied by abrogation of the S-phase arrest and increased sensitivity towards S23906. These findings identify ATR as a central co-ordinator of the DNA-damage response to S23906, and provide a mechanistic rationale for combinations of S23906 and similar agents with checkpoint abrogators.</abstract><cop>England</cop><pmid>21470188</pmid><doi>10.1042/BJ20101770</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0264-6021
ispartof Biochemical journal, 2011-07, Vol.437 (1), p.63-73
issn 0264-6021
1470-8728
language eng
recordid cdi_crossref_primary_10_1042_BJ20101770
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Acid Anhydride Hydrolases
Acronine - analogs & derivatives
Acronine - pharmacology
Antineoplastic Agents, Alkylating - pharmacology
Ataxia Telangiectasia Mutated Proteins
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Cycle Proteins - physiology
Checkpoint Kinase 1
Checkpoint Kinase 2
DNA Damage
DNA Repair Enzymes - metabolism
DNA-Binding Proteins - metabolism
HeLa Cells
Histones - metabolism
Humans
Microscopy, Fluorescence
MRE11 Homologue Protein
Mutation
Nuclear Proteins - metabolism
Protein Kinases - metabolism
Protein Serine-Threonine Kinases - genetics
Protein Serine-Threonine Kinases - metabolism
Protein Serine-Threonine Kinases - physiology
Replication Protein A - metabolism
Thiophenes - pharmacology
Urea - analogs & derivatives
Urea - pharmacology
title Ataxia telangiectasia mutated- and Rad3-related kinase drives both the early and the late DNA-damage response to the monofunctional antitumour alkylator S23906
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ataxia%20telangiectasia%20mutated-%20and%20Rad3-related%20kinase%20drives%20both%20the%20early%20and%20the%20late%20DNA-damage%20response%20to%20the%20monofunctional%20antitumour%20alkylator%20S23906&rft.jtitle=Biochemical%20journal&rft.au=Soares,%20Daniele%20G&rft.date=2011-07-01&rft.volume=437&rft.issue=1&rft.spage=63&rft.epage=73&rft.pages=63-73&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/BJ20101770&rft_dat=%3Cpubmed_cross%3E21470188%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21470188&rfr_iscdi=true