Dynamics of the F− + CH3Cl → Cl− + CH3F SN2 reaction on a chemically accurate potential energy surface

Though bimolecular nucleophilic substitution (S N 2) reactions play a fundamental role in chemistry, chemically accurate full-dimensional global analytical potential energy surfaces (PESs) have not been developed for these systems. These PESs govern the motion of the atoms in a chemical reaction; th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2013-10, Vol.4 (12), p.4362-437
Hauptverfasser: Szabó, István, Császár, Attila G, Czakó, Gábor
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 437
container_issue 12
container_start_page 4362
container_title Chemical science (Cambridge)
container_volume 4
creator Szabó, István
Császár, Attila G
Czakó, Gábor
description Though bimolecular nucleophilic substitution (S N 2) reactions play a fundamental role in chemistry, chemically accurate full-dimensional global analytical potential energy surfaces (PESs) have not been developed for these systems. These PESs govern the motion of the atoms in a chemical reaction; thus, the knowledge of the PES is essential to study the dynamics and atomic-level mechanisms. Here, we report a full-dimensional ab initio PES for the F − + CH 3 Cl → Cl − + CH 3 F reaction, the PES has an estimated average accuracy of about 0.5 kcal mol −1 . Quasiclassical trajectories on this PES reveal that the direct rebound mechanism dominates at high collision energies, whereas the reaction is mainly indirect at low collision energies, where the formation of long-lived hydrogen-bonded and C 3v ion-dipole entrance-channel complexes play a major role in the dynamics. A direct stripping mechanism is also found at large impact parameters resulting in significant forward scattering, whereas the direct rebound mechanism scatters towards backward directions. At high collision energies the reaction can be controlled by orienting the reactants into a reactive F − + H 3 CCl orientation, whereas at low collision energies the initial orientation is not always maintained, because the long-range ion-dipole interactions efficiently steer the reactants into a reactive orientation even if F − initially approaches the non-reactive side of CH 3 Cl. Mode-specific vibrational distributions show that the reaction produces vibrationally hot CH 3 F molecules with excited CF stretching, especially at low collision energies. Quasiclassical trajectory calculations are performed for the F − + CH 3 Cl S N 2 reaction using a new full-dimensional ab initio analytical potential energy surface.
doi_str_mv 10.1039/c3sc52157e
format Article
fullrecord <record><control><sourceid>rsc_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_c3sc52157e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c3sc52157e</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-5092abd39b25f0a9fdfe9fcf7ffadf3ad858b49af707994cc48a61890879345a3</originalsourceid><addsrcrecordid>eNp9kMFKw0AQhhdRsNRevAvjVYludrNN9ijRWqHoQT2H6WTXRrZJ2U0PeQHx3EfskxipVLw4DMww_zfD8DN2GvOrmEt9TTKQErFKzQEbCJ7E0VhJfbjvBT9moxDeeR9SxkqkA-ZuuxqXFQVoLLQLA5Pt5wYuIZ_K3MH2YwO5208m8PwowBuktmpq6BOBFqZfR-c6QKK1x9bAqmlN3VbowNTGv3UQ1t4imRN2ZNEFM_qpQ_Y6uXvJp9Hs6f4hv5lFJMa8jRTXAuel1HOhLEdtS2u0JZtai6WVWGYqmycabcpTrROiJMNxnGmepVomCuWQXezukm9C8MYWK18t0XdFzItvq4pfq3r4bAf7QHvuj37-n16s-pe-ACP8crs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamics of the F− + CH3Cl → Cl− + CH3F SN2 reaction on a chemically accurate potential energy surface</title><source>Royal Society Of Chemistry Journals</source><creator>Szabó, István ; Császár, Attila G ; Czakó, Gábor</creator><creatorcontrib>Szabó, István ; Császár, Attila G ; Czakó, Gábor</creatorcontrib><description>Though bimolecular nucleophilic substitution (S N 2) reactions play a fundamental role in chemistry, chemically accurate full-dimensional global analytical potential energy surfaces (PESs) have not been developed for these systems. These PESs govern the motion of the atoms in a chemical reaction; thus, the knowledge of the PES is essential to study the dynamics and atomic-level mechanisms. Here, we report a full-dimensional ab initio PES for the F − + CH 3 Cl → Cl − + CH 3 F reaction, the PES has an estimated average accuracy of about 0.5 kcal mol −1 . Quasiclassical trajectories on this PES reveal that the direct rebound mechanism dominates at high collision energies, whereas the reaction is mainly indirect at low collision energies, where the formation of long-lived hydrogen-bonded and C 3v ion-dipole entrance-channel complexes play a major role in the dynamics. A direct stripping mechanism is also found at large impact parameters resulting in significant forward scattering, whereas the direct rebound mechanism scatters towards backward directions. At high collision energies the reaction can be controlled by orienting the reactants into a reactive F − + H 3 CCl orientation, whereas at low collision energies the initial orientation is not always maintained, because the long-range ion-dipole interactions efficiently steer the reactants into a reactive orientation even if F − initially approaches the non-reactive side of CH 3 Cl. Mode-specific vibrational distributions show that the reaction produces vibrationally hot CH 3 F molecules with excited CF stretching, especially at low collision energies. Quasiclassical trajectory calculations are performed for the F − + CH 3 Cl S N 2 reaction using a new full-dimensional ab initio analytical potential energy surface.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c3sc52157e</identifier><language>eng</language><ispartof>Chemical science (Cambridge), 2013-10, Vol.4 (12), p.4362-437</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-5092abd39b25f0a9fdfe9fcf7ffadf3ad858b49af707994cc48a61890879345a3</citedby><cites>FETCH-LOGICAL-c260t-5092abd39b25f0a9fdfe9fcf7ffadf3ad858b49af707994cc48a61890879345a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Szabó, István</creatorcontrib><creatorcontrib>Császár, Attila G</creatorcontrib><creatorcontrib>Czakó, Gábor</creatorcontrib><title>Dynamics of the F− + CH3Cl → Cl− + CH3F SN2 reaction on a chemically accurate potential energy surface</title><title>Chemical science (Cambridge)</title><description>Though bimolecular nucleophilic substitution (S N 2) reactions play a fundamental role in chemistry, chemically accurate full-dimensional global analytical potential energy surfaces (PESs) have not been developed for these systems. These PESs govern the motion of the atoms in a chemical reaction; thus, the knowledge of the PES is essential to study the dynamics and atomic-level mechanisms. Here, we report a full-dimensional ab initio PES for the F − + CH 3 Cl → Cl − + CH 3 F reaction, the PES has an estimated average accuracy of about 0.5 kcal mol −1 . Quasiclassical trajectories on this PES reveal that the direct rebound mechanism dominates at high collision energies, whereas the reaction is mainly indirect at low collision energies, where the formation of long-lived hydrogen-bonded and C 3v ion-dipole entrance-channel complexes play a major role in the dynamics. A direct stripping mechanism is also found at large impact parameters resulting in significant forward scattering, whereas the direct rebound mechanism scatters towards backward directions. At high collision energies the reaction can be controlled by orienting the reactants into a reactive F − + H 3 CCl orientation, whereas at low collision energies the initial orientation is not always maintained, because the long-range ion-dipole interactions efficiently steer the reactants into a reactive orientation even if F − initially approaches the non-reactive side of CH 3 Cl. Mode-specific vibrational distributions show that the reaction produces vibrationally hot CH 3 F molecules with excited CF stretching, especially at low collision energies. Quasiclassical trajectory calculations are performed for the F − + CH 3 Cl S N 2 reaction using a new full-dimensional ab initio analytical potential energy surface.</description><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKw0AQhhdRsNRevAvjVYludrNN9ijRWqHoQT2H6WTXRrZJ2U0PeQHx3EfskxipVLw4DMww_zfD8DN2GvOrmEt9TTKQErFKzQEbCJ7E0VhJfbjvBT9moxDeeR9SxkqkA-ZuuxqXFQVoLLQLA5Pt5wYuIZ_K3MH2YwO5208m8PwowBuktmpq6BOBFqZfR-c6QKK1x9bAqmlN3VbowNTGv3UQ1t4imRN2ZNEFM_qpQ_Y6uXvJp9Hs6f4hv5lFJMa8jRTXAuel1HOhLEdtS2u0JZtai6WVWGYqmycabcpTrROiJMNxnGmepVomCuWQXezukm9C8MYWK18t0XdFzItvq4pfq3r4bAf7QHvuj37-n16s-pe-ACP8crs</recordid><startdate>20131028</startdate><enddate>20131028</enddate><creator>Szabó, István</creator><creator>Császár, Attila G</creator><creator>Czakó, Gábor</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131028</creationdate><title>Dynamics of the F− + CH3Cl → Cl− + CH3F SN2 reaction on a chemically accurate potential energy surface</title><author>Szabó, István ; Császár, Attila G ; Czakó, Gábor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-5092abd39b25f0a9fdfe9fcf7ffadf3ad858b49af707994cc48a61890879345a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szabó, István</creatorcontrib><creatorcontrib>Császár, Attila G</creatorcontrib><creatorcontrib>Czakó, Gábor</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szabó, István</au><au>Császár, Attila G</au><au>Czakó, Gábor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of the F− + CH3Cl → Cl− + CH3F SN2 reaction on a chemically accurate potential energy surface</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2013-10-28</date><risdate>2013</risdate><volume>4</volume><issue>12</issue><spage>4362</spage><epage>437</epage><pages>4362-437</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Though bimolecular nucleophilic substitution (S N 2) reactions play a fundamental role in chemistry, chemically accurate full-dimensional global analytical potential energy surfaces (PESs) have not been developed for these systems. These PESs govern the motion of the atoms in a chemical reaction; thus, the knowledge of the PES is essential to study the dynamics and atomic-level mechanisms. Here, we report a full-dimensional ab initio PES for the F − + CH 3 Cl → Cl − + CH 3 F reaction, the PES has an estimated average accuracy of about 0.5 kcal mol −1 . Quasiclassical trajectories on this PES reveal that the direct rebound mechanism dominates at high collision energies, whereas the reaction is mainly indirect at low collision energies, where the formation of long-lived hydrogen-bonded and C 3v ion-dipole entrance-channel complexes play a major role in the dynamics. A direct stripping mechanism is also found at large impact parameters resulting in significant forward scattering, whereas the direct rebound mechanism scatters towards backward directions. At high collision energies the reaction can be controlled by orienting the reactants into a reactive F − + H 3 CCl orientation, whereas at low collision energies the initial orientation is not always maintained, because the long-range ion-dipole interactions efficiently steer the reactants into a reactive orientation even if F − initially approaches the non-reactive side of CH 3 Cl. Mode-specific vibrational distributions show that the reaction produces vibrationally hot CH 3 F molecules with excited CF stretching, especially at low collision energies. Quasiclassical trajectory calculations are performed for the F − + CH 3 Cl S N 2 reaction using a new full-dimensional ab initio analytical potential energy surface.</abstract><doi>10.1039/c3sc52157e</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2013-10, Vol.4 (12), p.4362-437
issn 2041-6520
2041-6539
language eng
recordid cdi_crossref_primary_10_1039_c3sc52157e
source Royal Society Of Chemistry Journals
title Dynamics of the F− + CH3Cl → Cl− + CH3F SN2 reaction on a chemically accurate potential energy surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20the%20F%E2%88%92%20+%20CH3Cl%20%E2%86%92%20Cl%E2%88%92%20+%20CH3F%20SN2%20reaction%20on%20a%20chemically%20accurate%20potential%20energy%20surface&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Szab%C3%B3,%20Istv%C3%A1n&rft.date=2013-10-28&rft.volume=4&rft.issue=12&rft.spage=4362&rft.epage=437&rft.pages=4362-437&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c3sc52157e&rft_dat=%3Crsc_cross%3Ec3sc52157e%3C/rsc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true