The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana

Copper (Cu) homeostasis in plants is maintained by at least two mechanisms: (1) the miRNA-dependent reallocation of intracellular Cu among major Cu-enzymes and important energy-related functions; (2) the regulation of the expression of Cu transporters including members of the CTR/COPT family. These...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallomics 2013-09, Vol.5 (9), p.1262
Hauptverfasser: Gayomba, Sheena R, Jung, Ha-il, Yan, Jiapei, Danku, John, Rutzke, Michael A, Bernal, Maria, Krämer, Ute, Kochian, Leon V, Salt, David E, Vatamaniuk, Olena K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1262
container_title Metallomics
container_volume 5
creator Gayomba, Sheena R
Jung, Ha-il
Yan, Jiapei
Danku, John
Rutzke, Michael A
Bernal, Maria
Krämer, Ute
Kochian, Leon V
Salt, David E
Vatamaniuk, Olena K
description Copper (Cu) homeostasis in plants is maintained by at least two mechanisms: (1) the miRNA-dependent reallocation of intracellular Cu among major Cu-enzymes and important energy-related functions; (2) the regulation of the expression of Cu transporters including members of the CTR/COPT family. These events are controlled by the transcription factor SPL7 in Arabidopsis thaliana. Cadmium (Cd), on the other hand, is a non-essential and a highly toxic metal that interferes with homeostasis of essential elements by competing for cellular binding sites. Whether Cd affects Cu homeostasis in plants is unknown. We found that Cd stimulates Cu accumulation in roots of A. thaliana and increases mRNA expression of three plasma membrane-localized Cu uptake transporters, COPT1, COPT2 and COPT6. Further analysis of Cd sensitivity of single and triple copt1copt2copt6 mutants, and transgenic plants ectopically expressing COPT6 suggested that Cu uptake is an essential component of Cd resistance in A. thaliana. Analysis of the contribution of the SPL7-dependent pathway to Cd-induced expression of COPT1, COPT2 and COPT6 showed that it occurs, in part, through mimicking the SPL7-dependent transcriptional Cu deficiency response. This response also involves components of the Cu reallocation system, miRNA398, FSD1, CSD1 and CSD2. Furthermore, seedlings of the spl7-1 mutant accumulate up to 2-fold less Cu in roots than the wild-type, are hypersensitive to Cd, and are more sensitive to Cd than the triple copt1copt2copt6 mutant. Together these data show that exposure to excess Cd triggers SPL7-dependent Cu deficiency responses that include Cu uptake and reallocation that are required for basal Cd tolerance in A. thaliana.
doi_str_mv 10.1039/c3mt00111c
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_c3mt00111c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23835944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-9c608566723d9dd40e71b761dc9b7d5943c895a60dfe1c8f28e1e8f39bbf3f443</originalsourceid><addsrcrecordid>eNplkE9LwzAYxoMobk4vfgDJWeiWNG3aHEfxHwwcWsFbSZM3LNqmNWkP-wx-aSfTefD0Pi_8eOD5IXRJyZwSJhaKtQMhlFJ1hKY0S3mUCvp6fMiETtBZCG-E8ISQ9BRNYpazVCTJFH2WG8BF-bQoHtdlpKEHp8ENWHV9Dx6P_SDfAUun8fN6lf0HNBirLDi1xR5C37kAAUsPu-9jtB40Np3HtQyywUrq1o4tHroGvHQKsHV4OcfDRjZWOnmOToxsAlz83Bl6ub0pi_to9Xj3UCxXkWIxGyKhOMlTzrOYaaF1QiCjdcapVqLO9G4WU7lIJSfaAFW5iXOgkBsm6towkyRshq73vcp3IXgwVe9tK_22oqT6Nlr9Gd3BV3u4H-sW9AH9Vci-AKBfcyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Gayomba, Sheena R ; Jung, Ha-il ; Yan, Jiapei ; Danku, John ; Rutzke, Michael A ; Bernal, Maria ; Krämer, Ute ; Kochian, Leon V ; Salt, David E ; Vatamaniuk, Olena K</creator><creatorcontrib>Gayomba, Sheena R ; Jung, Ha-il ; Yan, Jiapei ; Danku, John ; Rutzke, Michael A ; Bernal, Maria ; Krämer, Ute ; Kochian, Leon V ; Salt, David E ; Vatamaniuk, Olena K</creatorcontrib><description>Copper (Cu) homeostasis in plants is maintained by at least two mechanisms: (1) the miRNA-dependent reallocation of intracellular Cu among major Cu-enzymes and important energy-related functions; (2) the regulation of the expression of Cu transporters including members of the CTR/COPT family. These events are controlled by the transcription factor SPL7 in Arabidopsis thaliana. Cadmium (Cd), on the other hand, is a non-essential and a highly toxic metal that interferes with homeostasis of essential elements by competing for cellular binding sites. Whether Cd affects Cu homeostasis in plants is unknown. We found that Cd stimulates Cu accumulation in roots of A. thaliana and increases mRNA expression of three plasma membrane-localized Cu uptake transporters, COPT1, COPT2 and COPT6. Further analysis of Cd sensitivity of single and triple copt1copt2copt6 mutants, and transgenic plants ectopically expressing COPT6 suggested that Cu uptake is an essential component of Cd resistance in A. thaliana. Analysis of the contribution of the SPL7-dependent pathway to Cd-induced expression of COPT1, COPT2 and COPT6 showed that it occurs, in part, through mimicking the SPL7-dependent transcriptional Cu deficiency response. This response also involves components of the Cu reallocation system, miRNA398, FSD1, CSD1 and CSD2. Furthermore, seedlings of the spl7-1 mutant accumulate up to 2-fold less Cu in roots than the wild-type, are hypersensitive to Cd, and are more sensitive to Cd than the triple copt1copt2copt6 mutant. Together these data show that exposure to excess Cd triggers SPL7-dependent Cu deficiency responses that include Cu uptake and reallocation that are required for basal Cd tolerance in A. thaliana.</description><identifier>ISSN: 1756-5901</identifier><identifier>EISSN: 1756-591X</identifier><identifier>DOI: 10.1039/c3mt00111c</identifier><identifier>PMID: 23835944</identifier><language>eng</language><publisher>England</publisher><subject>Adaptation, Physiological - drug effects ; Adaptation, Physiological - genetics ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Cadmium - pharmacology ; Cation Transport Proteins - genetics ; Cation Transport Proteins - metabolism ; Cell Membrane - metabolism ; Copper - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Gene Expression Regulation, Plant - drug effects ; Genetic Complementation Test ; Homeostasis - drug effects ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; MicroRNAs - genetics ; Microscopy, Fluorescence ; Models, Genetic ; Mutation ; Plant Roots - genetics ; Plant Roots - metabolism ; Plant Shoots - genetics ; Plant Shoots - metabolism ; Plants, Genetically Modified ; Reverse Transcriptase Polymerase Chain Reaction ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Metallomics, 2013-09, Vol.5 (9), p.1262</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-9c608566723d9dd40e71b761dc9b7d5943c895a60dfe1c8f28e1e8f39bbf3f443</citedby><cites>FETCH-LOGICAL-c323t-9c608566723d9dd40e71b761dc9b7d5943c895a60dfe1c8f28e1e8f39bbf3f443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23835944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gayomba, Sheena R</creatorcontrib><creatorcontrib>Jung, Ha-il</creatorcontrib><creatorcontrib>Yan, Jiapei</creatorcontrib><creatorcontrib>Danku, John</creatorcontrib><creatorcontrib>Rutzke, Michael A</creatorcontrib><creatorcontrib>Bernal, Maria</creatorcontrib><creatorcontrib>Krämer, Ute</creatorcontrib><creatorcontrib>Kochian, Leon V</creatorcontrib><creatorcontrib>Salt, David E</creatorcontrib><creatorcontrib>Vatamaniuk, Olena K</creatorcontrib><title>The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana</title><title>Metallomics</title><addtitle>Metallomics</addtitle><description>Copper (Cu) homeostasis in plants is maintained by at least two mechanisms: (1) the miRNA-dependent reallocation of intracellular Cu among major Cu-enzymes and important energy-related functions; (2) the regulation of the expression of Cu transporters including members of the CTR/COPT family. These events are controlled by the transcription factor SPL7 in Arabidopsis thaliana. Cadmium (Cd), on the other hand, is a non-essential and a highly toxic metal that interferes with homeostasis of essential elements by competing for cellular binding sites. Whether Cd affects Cu homeostasis in plants is unknown. We found that Cd stimulates Cu accumulation in roots of A. thaliana and increases mRNA expression of three plasma membrane-localized Cu uptake transporters, COPT1, COPT2 and COPT6. Further analysis of Cd sensitivity of single and triple copt1copt2copt6 mutants, and transgenic plants ectopically expressing COPT6 suggested that Cu uptake is an essential component of Cd resistance in A. thaliana. Analysis of the contribution of the SPL7-dependent pathway to Cd-induced expression of COPT1, COPT2 and COPT6 showed that it occurs, in part, through mimicking the SPL7-dependent transcriptional Cu deficiency response. This response also involves components of the Cu reallocation system, miRNA398, FSD1, CSD1 and CSD2. Furthermore, seedlings of the spl7-1 mutant accumulate up to 2-fold less Cu in roots than the wild-type, are hypersensitive to Cd, and are more sensitive to Cd than the triple copt1copt2copt6 mutant. Together these data show that exposure to excess Cd triggers SPL7-dependent Cu deficiency responses that include Cu uptake and reallocation that are required for basal Cd tolerance in A. thaliana.</description><subject>Adaptation, Physiological - drug effects</subject><subject>Adaptation, Physiological - genetics</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Cadmium - pharmacology</subject><subject>Cation Transport Proteins - genetics</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Copper - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Genetic Complementation Test</subject><subject>Homeostasis - drug effects</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>MicroRNAs - genetics</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - metabolism</subject><subject>Plant Shoots - genetics</subject><subject>Plant Shoots - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1756-5901</issn><issn>1756-591X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkE9LwzAYxoMobk4vfgDJWeiWNG3aHEfxHwwcWsFbSZM3LNqmNWkP-wx-aSfTefD0Pi_8eOD5IXRJyZwSJhaKtQMhlFJ1hKY0S3mUCvp6fMiETtBZCG-E8ISQ9BRNYpazVCTJFH2WG8BF-bQoHtdlpKEHp8ENWHV9Dx6P_SDfAUun8fN6lf0HNBirLDi1xR5C37kAAUsPu-9jtB40Np3HtQyywUrq1o4tHroGvHQKsHV4OcfDRjZWOnmOToxsAlz83Bl6ub0pi_to9Xj3UCxXkWIxGyKhOMlTzrOYaaF1QiCjdcapVqLO9G4WU7lIJSfaAFW5iXOgkBsm6towkyRshq73vcp3IXgwVe9tK_22oqT6Nlr9Gd3BV3u4H-sW9AH9Vci-AKBfcyY</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Gayomba, Sheena R</creator><creator>Jung, Ha-il</creator><creator>Yan, Jiapei</creator><creator>Danku, John</creator><creator>Rutzke, Michael A</creator><creator>Bernal, Maria</creator><creator>Krämer, Ute</creator><creator>Kochian, Leon V</creator><creator>Salt, David E</creator><creator>Vatamaniuk, Olena K</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201309</creationdate><title>The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana</title><author>Gayomba, Sheena R ; Jung, Ha-il ; Yan, Jiapei ; Danku, John ; Rutzke, Michael A ; Bernal, Maria ; Krämer, Ute ; Kochian, Leon V ; Salt, David E ; Vatamaniuk, Olena K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-9c608566723d9dd40e71b761dc9b7d5943c895a60dfe1c8f28e1e8f39bbf3f443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation, Physiological - drug effects</topic><topic>Adaptation, Physiological - genetics</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Cadmium - pharmacology</topic><topic>Cation Transport Proteins - genetics</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Copper - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Genetic Complementation Test</topic><topic>Homeostasis - drug effects</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>MicroRNAs - genetics</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - metabolism</topic><topic>Plant Shoots - genetics</topic><topic>Plant Shoots - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gayomba, Sheena R</creatorcontrib><creatorcontrib>Jung, Ha-il</creatorcontrib><creatorcontrib>Yan, Jiapei</creatorcontrib><creatorcontrib>Danku, John</creatorcontrib><creatorcontrib>Rutzke, Michael A</creatorcontrib><creatorcontrib>Bernal, Maria</creatorcontrib><creatorcontrib>Krämer, Ute</creatorcontrib><creatorcontrib>Kochian, Leon V</creatorcontrib><creatorcontrib>Salt, David E</creatorcontrib><creatorcontrib>Vatamaniuk, Olena K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Metallomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gayomba, Sheena R</au><au>Jung, Ha-il</au><au>Yan, Jiapei</au><au>Danku, John</au><au>Rutzke, Michael A</au><au>Bernal, Maria</au><au>Krämer, Ute</au><au>Kochian, Leon V</au><au>Salt, David E</au><au>Vatamaniuk, Olena K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana</atitle><jtitle>Metallomics</jtitle><addtitle>Metallomics</addtitle><date>2013-09</date><risdate>2013</risdate><volume>5</volume><issue>9</issue><spage>1262</spage><pages>1262-</pages><issn>1756-5901</issn><eissn>1756-591X</eissn><abstract>Copper (Cu) homeostasis in plants is maintained by at least two mechanisms: (1) the miRNA-dependent reallocation of intracellular Cu among major Cu-enzymes and important energy-related functions; (2) the regulation of the expression of Cu transporters including members of the CTR/COPT family. These events are controlled by the transcription factor SPL7 in Arabidopsis thaliana. Cadmium (Cd), on the other hand, is a non-essential and a highly toxic metal that interferes with homeostasis of essential elements by competing for cellular binding sites. Whether Cd affects Cu homeostasis in plants is unknown. We found that Cd stimulates Cu accumulation in roots of A. thaliana and increases mRNA expression of three plasma membrane-localized Cu uptake transporters, COPT1, COPT2 and COPT6. Further analysis of Cd sensitivity of single and triple copt1copt2copt6 mutants, and transgenic plants ectopically expressing COPT6 suggested that Cu uptake is an essential component of Cd resistance in A. thaliana. Analysis of the contribution of the SPL7-dependent pathway to Cd-induced expression of COPT1, COPT2 and COPT6 showed that it occurs, in part, through mimicking the SPL7-dependent transcriptional Cu deficiency response. This response also involves components of the Cu reallocation system, miRNA398, FSD1, CSD1 and CSD2. Furthermore, seedlings of the spl7-1 mutant accumulate up to 2-fold less Cu in roots than the wild-type, are hypersensitive to Cd, and are more sensitive to Cd than the triple copt1copt2copt6 mutant. Together these data show that exposure to excess Cd triggers SPL7-dependent Cu deficiency responses that include Cu uptake and reallocation that are required for basal Cd tolerance in A. thaliana.</abstract><cop>England</cop><pmid>23835944</pmid><doi>10.1039/c3mt00111c</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1756-5901
ispartof Metallomics, 2013-09, Vol.5 (9), p.1262
issn 1756-5901
1756-591X
language eng
recordid cdi_crossref_primary_10_1039_c3mt00111c
source MEDLINE; Royal Society Of Chemistry Journals; Oxford University Press Journals All Titles (1996-Current)
subjects Adaptation, Physiological - drug effects
Adaptation, Physiological - genetics
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Cadmium - pharmacology
Cation Transport Proteins - genetics
Cation Transport Proteins - metabolism
Cell Membrane - metabolism
Copper - metabolism
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Gene Expression Regulation, Plant - drug effects
Genetic Complementation Test
Homeostasis - drug effects
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
MicroRNAs - genetics
Microscopy, Fluorescence
Models, Genetic
Mutation
Plant Roots - genetics
Plant Roots - metabolism
Plant Shoots - genetics
Plant Shoots - metabolism
Plants, Genetically Modified
Reverse Transcriptase Polymerase Chain Reaction
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Superoxide Dismutase - genetics
Superoxide Dismutase - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
title The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20CTR/COPT-dependent%20copper%20uptake%20and%20SPL7-dependent%20copper%20deficiency%20responses%20are%20required%20for%20basal%20cadmium%20tolerance%20in%20A.%20thaliana&rft.jtitle=Metallomics&rft.au=Gayomba,%20Sheena%20R&rft.date=2013-09&rft.volume=5&rft.issue=9&rft.spage=1262&rft.pages=1262-&rft.issn=1756-5901&rft.eissn=1756-591X&rft_id=info:doi/10.1039/c3mt00111c&rft_dat=%3Cpubmed_cross%3E23835944%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23835944&rfr_iscdi=true