The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana
Copper (Cu) homeostasis in plants is maintained by at least two mechanisms: (1) the miRNA-dependent reallocation of intracellular Cu among major Cu-enzymes and important energy-related functions; (2) the regulation of the expression of Cu transporters including members of the CTR/COPT family. These...
Gespeichert in:
Veröffentlicht in: | Metallomics 2013-09, Vol.5 (9), p.1262 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1262 |
container_title | Metallomics |
container_volume | 5 |
creator | Gayomba, Sheena R Jung, Ha-il Yan, Jiapei Danku, John Rutzke, Michael A Bernal, Maria Krämer, Ute Kochian, Leon V Salt, David E Vatamaniuk, Olena K |
description | Copper (Cu) homeostasis in plants is maintained by at least two mechanisms: (1) the miRNA-dependent reallocation of intracellular Cu among major Cu-enzymes and important energy-related functions; (2) the regulation of the expression of Cu transporters including members of the CTR/COPT family. These events are controlled by the transcription factor SPL7 in Arabidopsis thaliana. Cadmium (Cd), on the other hand, is a non-essential and a highly toxic metal that interferes with homeostasis of essential elements by competing for cellular binding sites. Whether Cd affects Cu homeostasis in plants is unknown. We found that Cd stimulates Cu accumulation in roots of A. thaliana and increases mRNA expression of three plasma membrane-localized Cu uptake transporters, COPT1, COPT2 and COPT6. Further analysis of Cd sensitivity of single and triple copt1copt2copt6 mutants, and transgenic plants ectopically expressing COPT6 suggested that Cu uptake is an essential component of Cd resistance in A. thaliana. Analysis of the contribution of the SPL7-dependent pathway to Cd-induced expression of COPT1, COPT2 and COPT6 showed that it occurs, in part, through mimicking the SPL7-dependent transcriptional Cu deficiency response. This response also involves components of the Cu reallocation system, miRNA398, FSD1, CSD1 and CSD2. Furthermore, seedlings of the spl7-1 mutant accumulate up to 2-fold less Cu in roots than the wild-type, are hypersensitive to Cd, and are more sensitive to Cd than the triple copt1copt2copt6 mutant. Together these data show that exposure to excess Cd triggers SPL7-dependent Cu deficiency responses that include Cu uptake and reallocation that are required for basal Cd tolerance in A. thaliana. |
doi_str_mv | 10.1039/c3mt00111c |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_c3mt00111c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23835944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-9c608566723d9dd40e71b761dc9b7d5943c895a60dfe1c8f28e1e8f39bbf3f443</originalsourceid><addsrcrecordid>eNplkE9LwzAYxoMobk4vfgDJWeiWNG3aHEfxHwwcWsFbSZM3LNqmNWkP-wx-aSfTefD0Pi_8eOD5IXRJyZwSJhaKtQMhlFJ1hKY0S3mUCvp6fMiETtBZCG-E8ISQ9BRNYpazVCTJFH2WG8BF-bQoHtdlpKEHp8ENWHV9Dx6P_SDfAUun8fN6lf0HNBirLDi1xR5C37kAAUsPu-9jtB40Np3HtQyywUrq1o4tHroGvHQKsHV4OcfDRjZWOnmOToxsAlz83Bl6ub0pi_to9Xj3UCxXkWIxGyKhOMlTzrOYaaF1QiCjdcapVqLO9G4WU7lIJSfaAFW5iXOgkBsm6towkyRshq73vcp3IXgwVe9tK_22oqT6Nlr9Gd3BV3u4H-sW9AH9Vci-AKBfcyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Gayomba, Sheena R ; Jung, Ha-il ; Yan, Jiapei ; Danku, John ; Rutzke, Michael A ; Bernal, Maria ; Krämer, Ute ; Kochian, Leon V ; Salt, David E ; Vatamaniuk, Olena K</creator><creatorcontrib>Gayomba, Sheena R ; Jung, Ha-il ; Yan, Jiapei ; Danku, John ; Rutzke, Michael A ; Bernal, Maria ; Krämer, Ute ; Kochian, Leon V ; Salt, David E ; Vatamaniuk, Olena K</creatorcontrib><description>Copper (Cu) homeostasis in plants is maintained by at least two mechanisms: (1) the miRNA-dependent reallocation of intracellular Cu among major Cu-enzymes and important energy-related functions; (2) the regulation of the expression of Cu transporters including members of the CTR/COPT family. These events are controlled by the transcription factor SPL7 in Arabidopsis thaliana. Cadmium (Cd), on the other hand, is a non-essential and a highly toxic metal that interferes with homeostasis of essential elements by competing for cellular binding sites. Whether Cd affects Cu homeostasis in plants is unknown. We found that Cd stimulates Cu accumulation in roots of A. thaliana and increases mRNA expression of three plasma membrane-localized Cu uptake transporters, COPT1, COPT2 and COPT6. Further analysis of Cd sensitivity of single and triple copt1copt2copt6 mutants, and transgenic plants ectopically expressing COPT6 suggested that Cu uptake is an essential component of Cd resistance in A. thaliana. Analysis of the contribution of the SPL7-dependent pathway to Cd-induced expression of COPT1, COPT2 and COPT6 showed that it occurs, in part, through mimicking the SPL7-dependent transcriptional Cu deficiency response. This response also involves components of the Cu reallocation system, miRNA398, FSD1, CSD1 and CSD2. Furthermore, seedlings of the spl7-1 mutant accumulate up to 2-fold less Cu in roots than the wild-type, are hypersensitive to Cd, and are more sensitive to Cd than the triple copt1copt2copt6 mutant. Together these data show that exposure to excess Cd triggers SPL7-dependent Cu deficiency responses that include Cu uptake and reallocation that are required for basal Cd tolerance in A. thaliana.</description><identifier>ISSN: 1756-5901</identifier><identifier>EISSN: 1756-591X</identifier><identifier>DOI: 10.1039/c3mt00111c</identifier><identifier>PMID: 23835944</identifier><language>eng</language><publisher>England</publisher><subject>Adaptation, Physiological - drug effects ; Adaptation, Physiological - genetics ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Cadmium - pharmacology ; Cation Transport Proteins - genetics ; Cation Transport Proteins - metabolism ; Cell Membrane - metabolism ; Copper - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Gene Expression Regulation, Plant - drug effects ; Genetic Complementation Test ; Homeostasis - drug effects ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; MicroRNAs - genetics ; Microscopy, Fluorescence ; Models, Genetic ; Mutation ; Plant Roots - genetics ; Plant Roots - metabolism ; Plant Shoots - genetics ; Plant Shoots - metabolism ; Plants, Genetically Modified ; Reverse Transcriptase Polymerase Chain Reaction ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - metabolism ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Metallomics, 2013-09, Vol.5 (9), p.1262</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-9c608566723d9dd40e71b761dc9b7d5943c895a60dfe1c8f28e1e8f39bbf3f443</citedby><cites>FETCH-LOGICAL-c323t-9c608566723d9dd40e71b761dc9b7d5943c895a60dfe1c8f28e1e8f39bbf3f443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23835944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gayomba, Sheena R</creatorcontrib><creatorcontrib>Jung, Ha-il</creatorcontrib><creatorcontrib>Yan, Jiapei</creatorcontrib><creatorcontrib>Danku, John</creatorcontrib><creatorcontrib>Rutzke, Michael A</creatorcontrib><creatorcontrib>Bernal, Maria</creatorcontrib><creatorcontrib>Krämer, Ute</creatorcontrib><creatorcontrib>Kochian, Leon V</creatorcontrib><creatorcontrib>Salt, David E</creatorcontrib><creatorcontrib>Vatamaniuk, Olena K</creatorcontrib><title>The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana</title><title>Metallomics</title><addtitle>Metallomics</addtitle><description>Copper (Cu) homeostasis in plants is maintained by at least two mechanisms: (1) the miRNA-dependent reallocation of intracellular Cu among major Cu-enzymes and important energy-related functions; (2) the regulation of the expression of Cu transporters including members of the CTR/COPT family. These events are controlled by the transcription factor SPL7 in Arabidopsis thaliana. Cadmium (Cd), on the other hand, is a non-essential and a highly toxic metal that interferes with homeostasis of essential elements by competing for cellular binding sites. Whether Cd affects Cu homeostasis in plants is unknown. We found that Cd stimulates Cu accumulation in roots of A. thaliana and increases mRNA expression of three plasma membrane-localized Cu uptake transporters, COPT1, COPT2 and COPT6. Further analysis of Cd sensitivity of single and triple copt1copt2copt6 mutants, and transgenic plants ectopically expressing COPT6 suggested that Cu uptake is an essential component of Cd resistance in A. thaliana. Analysis of the contribution of the SPL7-dependent pathway to Cd-induced expression of COPT1, COPT2 and COPT6 showed that it occurs, in part, through mimicking the SPL7-dependent transcriptional Cu deficiency response. This response also involves components of the Cu reallocation system, miRNA398, FSD1, CSD1 and CSD2. Furthermore, seedlings of the spl7-1 mutant accumulate up to 2-fold less Cu in roots than the wild-type, are hypersensitive to Cd, and are more sensitive to Cd than the triple copt1copt2copt6 mutant. Together these data show that exposure to excess Cd triggers SPL7-dependent Cu deficiency responses that include Cu uptake and reallocation that are required for basal Cd tolerance in A. thaliana.</description><subject>Adaptation, Physiological - drug effects</subject><subject>Adaptation, Physiological - genetics</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Cadmium - pharmacology</subject><subject>Cation Transport Proteins - genetics</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>Copper - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Genetic Complementation Test</subject><subject>Homeostasis - drug effects</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>MicroRNAs - genetics</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - metabolism</subject><subject>Plant Shoots - genetics</subject><subject>Plant Shoots - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1756-5901</issn><issn>1756-591X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkE9LwzAYxoMobk4vfgDJWeiWNG3aHEfxHwwcWsFbSZM3LNqmNWkP-wx-aSfTefD0Pi_8eOD5IXRJyZwSJhaKtQMhlFJ1hKY0S3mUCvp6fMiETtBZCG-E8ISQ9BRNYpazVCTJFH2WG8BF-bQoHtdlpKEHp8ENWHV9Dx6P_SDfAUun8fN6lf0HNBirLDi1xR5C37kAAUsPu-9jtB40Np3HtQyywUrq1o4tHroGvHQKsHV4OcfDRjZWOnmOToxsAlz83Bl6ub0pi_to9Xj3UCxXkWIxGyKhOMlTzrOYaaF1QiCjdcapVqLO9G4WU7lIJSfaAFW5iXOgkBsm6towkyRshq73vcp3IXgwVe9tK_22oqT6Nlr9Gd3BV3u4H-sW9AH9Vci-AKBfcyY</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Gayomba, Sheena R</creator><creator>Jung, Ha-il</creator><creator>Yan, Jiapei</creator><creator>Danku, John</creator><creator>Rutzke, Michael A</creator><creator>Bernal, Maria</creator><creator>Krämer, Ute</creator><creator>Kochian, Leon V</creator><creator>Salt, David E</creator><creator>Vatamaniuk, Olena K</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201309</creationdate><title>The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana</title><author>Gayomba, Sheena R ; Jung, Ha-il ; Yan, Jiapei ; Danku, John ; Rutzke, Michael A ; Bernal, Maria ; Krämer, Ute ; Kochian, Leon V ; Salt, David E ; Vatamaniuk, Olena K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-9c608566723d9dd40e71b761dc9b7d5943c895a60dfe1c8f28e1e8f39bbf3f443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation, Physiological - drug effects</topic><topic>Adaptation, Physiological - genetics</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Cadmium - pharmacology</topic><topic>Cation Transport Proteins - genetics</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>Copper - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Genetic Complementation Test</topic><topic>Homeostasis - drug effects</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>MicroRNAs - genetics</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - metabolism</topic><topic>Plant Shoots - genetics</topic><topic>Plant Shoots - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gayomba, Sheena R</creatorcontrib><creatorcontrib>Jung, Ha-il</creatorcontrib><creatorcontrib>Yan, Jiapei</creatorcontrib><creatorcontrib>Danku, John</creatorcontrib><creatorcontrib>Rutzke, Michael A</creatorcontrib><creatorcontrib>Bernal, Maria</creatorcontrib><creatorcontrib>Krämer, Ute</creatorcontrib><creatorcontrib>Kochian, Leon V</creatorcontrib><creatorcontrib>Salt, David E</creatorcontrib><creatorcontrib>Vatamaniuk, Olena K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Metallomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gayomba, Sheena R</au><au>Jung, Ha-il</au><au>Yan, Jiapei</au><au>Danku, John</au><au>Rutzke, Michael A</au><au>Bernal, Maria</au><au>Krämer, Ute</au><au>Kochian, Leon V</au><au>Salt, David E</au><au>Vatamaniuk, Olena K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana</atitle><jtitle>Metallomics</jtitle><addtitle>Metallomics</addtitle><date>2013-09</date><risdate>2013</risdate><volume>5</volume><issue>9</issue><spage>1262</spage><pages>1262-</pages><issn>1756-5901</issn><eissn>1756-591X</eissn><abstract>Copper (Cu) homeostasis in plants is maintained by at least two mechanisms: (1) the miRNA-dependent reallocation of intracellular Cu among major Cu-enzymes and important energy-related functions; (2) the regulation of the expression of Cu transporters including members of the CTR/COPT family. These events are controlled by the transcription factor SPL7 in Arabidopsis thaliana. Cadmium (Cd), on the other hand, is a non-essential and a highly toxic metal that interferes with homeostasis of essential elements by competing for cellular binding sites. Whether Cd affects Cu homeostasis in plants is unknown. We found that Cd stimulates Cu accumulation in roots of A. thaliana and increases mRNA expression of three plasma membrane-localized Cu uptake transporters, COPT1, COPT2 and COPT6. Further analysis of Cd sensitivity of single and triple copt1copt2copt6 mutants, and transgenic plants ectopically expressing COPT6 suggested that Cu uptake is an essential component of Cd resistance in A. thaliana. Analysis of the contribution of the SPL7-dependent pathway to Cd-induced expression of COPT1, COPT2 and COPT6 showed that it occurs, in part, through mimicking the SPL7-dependent transcriptional Cu deficiency response. This response also involves components of the Cu reallocation system, miRNA398, FSD1, CSD1 and CSD2. Furthermore, seedlings of the spl7-1 mutant accumulate up to 2-fold less Cu in roots than the wild-type, are hypersensitive to Cd, and are more sensitive to Cd than the triple copt1copt2copt6 mutant. Together these data show that exposure to excess Cd triggers SPL7-dependent Cu deficiency responses that include Cu uptake and reallocation that are required for basal Cd tolerance in A. thaliana.</abstract><cop>England</cop><pmid>23835944</pmid><doi>10.1039/c3mt00111c</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1756-5901 |
ispartof | Metallomics, 2013-09, Vol.5 (9), p.1262 |
issn | 1756-5901 1756-591X |
language | eng |
recordid | cdi_crossref_primary_10_1039_c3mt00111c |
source | MEDLINE; Royal Society Of Chemistry Journals; Oxford University Press Journals All Titles (1996-Current) |
subjects | Adaptation, Physiological - drug effects Adaptation, Physiological - genetics Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Cadmium - pharmacology Cation Transport Proteins - genetics Cation Transport Proteins - metabolism Cell Membrane - metabolism Copper - metabolism DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Gene Expression Regulation, Plant - drug effects Genetic Complementation Test Homeostasis - drug effects Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism MicroRNAs - genetics Microscopy, Fluorescence Models, Genetic Mutation Plant Roots - genetics Plant Roots - metabolism Plant Shoots - genetics Plant Shoots - metabolism Plants, Genetically Modified Reverse Transcriptase Polymerase Chain Reaction Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Superoxide Dismutase - genetics Superoxide Dismutase - metabolism Transcription Factors - genetics Transcription Factors - metabolism |
title | The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20CTR/COPT-dependent%20copper%20uptake%20and%20SPL7-dependent%20copper%20deficiency%20responses%20are%20required%20for%20basal%20cadmium%20tolerance%20in%20A.%20thaliana&rft.jtitle=Metallomics&rft.au=Gayomba,%20Sheena%20R&rft.date=2013-09&rft.volume=5&rft.issue=9&rft.spage=1262&rft.pages=1262-&rft.issn=1756-5901&rft.eissn=1756-591X&rft_id=info:doi/10.1039/c3mt00111c&rft_dat=%3Cpubmed_cross%3E23835944%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23835944&rfr_iscdi=true |