First principles study of the permeability of graphene to hydrogen atoms

Using calculations from first principles and harmonic transition state theory, we investigated the permeability of a single graphene sheet to protons and hydrogen atoms. Our results show that while protons can readily pass through a graphene sheet with a low tunneling barrier, for hydrogen atoms the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2013-10, Vol.15 (38), p.16132-16137
Hauptverfasser: MENG MIAO, BUONGIORNO NARDELLI, Marco, QI WANG, YINGCHUN LIU
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16137
container_issue 38
container_start_page 16132
container_title Physical chemistry chemical physics : PCCP
container_volume 15
creator MENG MIAO
BUONGIORNO NARDELLI, Marco
QI WANG
YINGCHUN LIU
description Using calculations from first principles and harmonic transition state theory, we investigated the permeability of a single graphene sheet to protons and hydrogen atoms. Our results show that while protons can readily pass through a graphene sheet with a low tunneling barrier, for hydrogen atoms the barriers are substantially higher. At the same time, the presence of defects in the membrane can significantly reduce the penetration barrier in a region that extends beyond the defect site itself.
doi_str_mv 10.1039/c3cp52318g
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_c3cp52318g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23986179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-962349bc559343a4b4499e0db13cadd547ae7063682bd29710b14b8abd176113</originalsourceid><addsrcrecordid>eNpF0E1PwzAMBuAIgdgYXPgBKBcuSIW4TpPmiCbGkCZx2b3KV7eidq2S7LB_T2GwnWxZjyz7JeQe2DMwVC8W7VDkCOXmgkyBC8wUK_nlqZdiQm5i_GKMQQF4TSY5qlKAVFOyXDQhJjqEZmebofWRxrR3B9rXNG09HXzovDZN26Tf2SboYet3nqaebg8u9Bu_ozr1XbwlV7Vuo7_7qzOyXryt58ts9fn-MX9dZTYvecqUyJErY4tCIUfNDedKeeYMoNXOFVxqL5lAUebG5UoCM8BNqY0DKQBwRp6Oa23oYwy-rsbTOx0OFbDqJ43qnMaIH4542JvOuxP9f38Ej39AR6vbOugxhXh2UhaCS47fTddniA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First principles study of the permeability of graphene to hydrogen atoms</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>MENG MIAO ; BUONGIORNO NARDELLI, Marco ; QI WANG ; YINGCHUN LIU</creator><creatorcontrib>MENG MIAO ; BUONGIORNO NARDELLI, Marco ; QI WANG ; YINGCHUN LIU</creatorcontrib><description>Using calculations from first principles and harmonic transition state theory, we investigated the permeability of a single graphene sheet to protons and hydrogen atoms. Our results show that while protons can readily pass through a graphene sheet with a low tunneling barrier, for hydrogen atoms the barriers are substantially higher. At the same time, the presence of defects in the membrane can significantly reduce the penetration barrier in a region that extends beyond the defect site itself.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c3cp52318g</identifier><identifier>PMID: 23986179</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; Membranes</subject><ispartof>Physical chemistry chemical physics : PCCP, 2013-10, Vol.15 (38), p.16132-16137</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-962349bc559343a4b4499e0db13cadd547ae7063682bd29710b14b8abd176113</citedby><cites>FETCH-LOGICAL-c284t-962349bc559343a4b4499e0db13cadd547ae7063682bd29710b14b8abd176113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27756474$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23986179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MENG MIAO</creatorcontrib><creatorcontrib>BUONGIORNO NARDELLI, Marco</creatorcontrib><creatorcontrib>QI WANG</creatorcontrib><creatorcontrib>YINGCHUN LIU</creatorcontrib><title>First principles study of the permeability of graphene to hydrogen atoms</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Using calculations from first principles and harmonic transition state theory, we investigated the permeability of a single graphene sheet to protons and hydrogen atoms. Our results show that while protons can readily pass through a graphene sheet with a low tunneling barrier, for hydrogen atoms the barriers are substantially higher. At the same time, the presence of defects in the membrane can significantly reduce the penetration barrier in a region that extends beyond the defect site itself.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Membranes</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpF0E1PwzAMBuAIgdgYXPgBKBcuSIW4TpPmiCbGkCZx2b3KV7eidq2S7LB_T2GwnWxZjyz7JeQe2DMwVC8W7VDkCOXmgkyBC8wUK_nlqZdiQm5i_GKMQQF4TSY5qlKAVFOyXDQhJjqEZmebofWRxrR3B9rXNG09HXzovDZN26Tf2SboYet3nqaebg8u9Bu_ozr1XbwlV7Vuo7_7qzOyXryt58ts9fn-MX9dZTYvecqUyJErY4tCIUfNDedKeeYMoNXOFVxqL5lAUebG5UoCM8BNqY0DKQBwRp6Oa23oYwy-rsbTOx0OFbDqJ43qnMaIH4542JvOuxP9f38Ej39AR6vbOugxhXh2UhaCS47fTddniA</recordid><startdate>20131014</startdate><enddate>20131014</enddate><creator>MENG MIAO</creator><creator>BUONGIORNO NARDELLI, Marco</creator><creator>QI WANG</creator><creator>YINGCHUN LIU</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131014</creationdate><title>First principles study of the permeability of graphene to hydrogen atoms</title><author>MENG MIAO ; BUONGIORNO NARDELLI, Marco ; QI WANG ; YINGCHUN LIU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-962349bc559343a4b4499e0db13cadd547ae7063682bd29710b14b8abd176113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Membranes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MENG MIAO</creatorcontrib><creatorcontrib>BUONGIORNO NARDELLI, Marco</creatorcontrib><creatorcontrib>QI WANG</creatorcontrib><creatorcontrib>YINGCHUN LIU</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MENG MIAO</au><au>BUONGIORNO NARDELLI, Marco</au><au>QI WANG</au><au>YINGCHUN LIU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First principles study of the permeability of graphene to hydrogen atoms</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2013-10-14</date><risdate>2013</risdate><volume>15</volume><issue>38</issue><spage>16132</spage><epage>16137</epage><pages>16132-16137</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Using calculations from first principles and harmonic transition state theory, we investigated the permeability of a single graphene sheet to protons and hydrogen atoms. Our results show that while protons can readily pass through a graphene sheet with a low tunneling barrier, for hydrogen atoms the barriers are substantially higher. At the same time, the presence of defects in the membrane can significantly reduce the penetration barrier in a region that extends beyond the defect site itself.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>23986179</pmid><doi>10.1039/c3cp52318g</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2013-10, Vol.15 (38), p.16132-16137
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_c3cp52318g
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chemistry
Colloidal state and disperse state
Exact sciences and technology
General and physical chemistry
Membranes
title First principles study of the permeability of graphene to hydrogen atoms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20principles%20study%20of%20the%20permeability%20of%20graphene%20to%20hydrogen%20atoms&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=MENG%20MIAO&rft.date=2013-10-14&rft.volume=15&rft.issue=38&rft.spage=16132&rft.epage=16137&rft.pages=16132-16137&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c3cp52318g&rft_dat=%3Cpubmed_cross%3E23986179%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23986179&rfr_iscdi=true