Absence of an evaporation-driven wetting transition on omniphobic surfaces
Surfaces that exhibit contact angles close to 180° for both polar and non-polar solvents are rare. Here we report the fabrication of such "omniphobic" surfaces by photolithography. We investigate their stability against a so-called wetting transition during evaporation of millimetric water...
Gespeichert in:
Veröffentlicht in: | Soft matter 2012-01, Vol.8 (38), p.9765-977 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 977 |
---|---|
container_issue | 38 |
container_start_page | 9765 |
container_title | Soft matter |
container_volume | 8 |
creator | Susarrey-Arce, A Marín, Á. G Nair, H Lefferts, L Gardeniers, J. G. E Lohse, D van Houselt, A |
description | Surfaces that exhibit contact angles close to 180° for both polar and non-polar solvents are rare. Here we report the fabrication of such "omniphobic" surfaces by photolithography. We investigate their stability against a so-called wetting transition during evaporation of millimetric water droplets by systematically varying the shape and surface roughness of the micropillars on the surface. We show that a low edge curvature of the top of the micropillars strongly delays the transition, while it completely disappears when the surface roughness is increased. We compare these experimental findings with existing models that describe the Cassie-Baxter to Wenzel transition and conclude that new models are needed which include the hurdle of an energy barrier for the wetting transition. Our results reveal that by increasing the roughness of the micropillars we do not affect the apparent equilibrium contact angle of the droplets. The dynamic robustness of the surface is, however, dramatically enhanced by an increase of the surface roughness.
On omniphobic surfaces (both water and oil repellent) droplets can stay in the Cassie-Baxter state their entire life during evaporation, without a transition to the Wenzel state. |
doi_str_mv | 10.1039/c2sm25746g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_c2sm25746g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1136404154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-2999c1a65808a28e19d005a959056f89ab4a5c36cc2fd3d0a53e18540d16e9dc3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsb90LciTCaTB5NlqX4pOBGwV1Ik5sa6WTGZFrx39tSqbgRDtwD38ddHIROKbmihOlrV5emFiMu53toQEecV1Jxtb_r7PUQHZXyTghTnMoBehzPCiQHuA3YJgwr27XZ9rFNlc9xBQl_Qt_HNMd9tqnEDcGbNCl2b-0sOlyWOVgH5RgdBLsocPJzh-jl9uZ5cl9Nn-4eJuNp5Rit-6rWWjtqpVBE2VoB1Z4QYbXQRMigtJ1xKxyTztXBM0-sYECV4MRTCdo7NkQX279dbj-WUHrTxOJgsbAJ2mUxlDLJCaeCr9XLrepyW0qGYLocG5u_DCVmM5j5HWwtn23lXNzO-8PP_-Om84F9A2SEdDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136404154</pqid></control><display><type>article</type><title>Absence of an evaporation-driven wetting transition on omniphobic surfaces</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Susarrey-Arce, A ; Marín, Á. G ; Nair, H ; Lefferts, L ; Gardeniers, J. G. E ; Lohse, D ; van Houselt, A</creator><creatorcontrib>Susarrey-Arce, A ; Marín, Á. G ; Nair, H ; Lefferts, L ; Gardeniers, J. G. E ; Lohse, D ; van Houselt, A</creatorcontrib><description>Surfaces that exhibit contact angles close to 180° for both polar and non-polar solvents are rare. Here we report the fabrication of such "omniphobic" surfaces by photolithography. We investigate their stability against a so-called wetting transition during evaporation of millimetric water droplets by systematically varying the shape and surface roughness of the micropillars on the surface. We show that a low edge curvature of the top of the micropillars strongly delays the transition, while it completely disappears when the surface roughness is increased. We compare these experimental findings with existing models that describe the Cassie-Baxter to Wenzel transition and conclude that new models are needed which include the hurdle of an energy barrier for the wetting transition. Our results reveal that by increasing the roughness of the micropillars we do not affect the apparent equilibrium contact angle of the droplets. The dynamic robustness of the surface is, however, dramatically enhanced by an increase of the surface roughness.
On omniphobic surfaces (both water and oil repellent) droplets can stay in the Cassie-Baxter state their entire life during evaporation, without a transition to the Wenzel state.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c2sm25746g</identifier><language>eng</language><subject>Contact angle ; Curvature ; Droplets ; Evaporation ; Photolithography ; Robustness ; Surface roughness ; Wetting</subject><ispartof>Soft matter, 2012-01, Vol.8 (38), p.9765-977</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-2999c1a65808a28e19d005a959056f89ab4a5c36cc2fd3d0a53e18540d16e9dc3</citedby><cites>FETCH-LOGICAL-c312t-2999c1a65808a28e19d005a959056f89ab4a5c36cc2fd3d0a53e18540d16e9dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Susarrey-Arce, A</creatorcontrib><creatorcontrib>Marín, Á. G</creatorcontrib><creatorcontrib>Nair, H</creatorcontrib><creatorcontrib>Lefferts, L</creatorcontrib><creatorcontrib>Gardeniers, J. G. E</creatorcontrib><creatorcontrib>Lohse, D</creatorcontrib><creatorcontrib>van Houselt, A</creatorcontrib><title>Absence of an evaporation-driven wetting transition on omniphobic surfaces</title><title>Soft matter</title><description>Surfaces that exhibit contact angles close to 180° for both polar and non-polar solvents are rare. Here we report the fabrication of such "omniphobic" surfaces by photolithography. We investigate their stability against a so-called wetting transition during evaporation of millimetric water droplets by systematically varying the shape and surface roughness of the micropillars on the surface. We show that a low edge curvature of the top of the micropillars strongly delays the transition, while it completely disappears when the surface roughness is increased. We compare these experimental findings with existing models that describe the Cassie-Baxter to Wenzel transition and conclude that new models are needed which include the hurdle of an energy barrier for the wetting transition. Our results reveal that by increasing the roughness of the micropillars we do not affect the apparent equilibrium contact angle of the droplets. The dynamic robustness of the surface is, however, dramatically enhanced by an increase of the surface roughness.
On omniphobic surfaces (both water and oil repellent) droplets can stay in the Cassie-Baxter state their entire life during evaporation, without a transition to the Wenzel state.</description><subject>Contact angle</subject><subject>Curvature</subject><subject>Droplets</subject><subject>Evaporation</subject><subject>Photolithography</subject><subject>Robustness</subject><subject>Surface roughness</subject><subject>Wetting</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKsb90LciTCaTB5NlqX4pOBGwV1Ik5sa6WTGZFrx39tSqbgRDtwD38ddHIROKbmihOlrV5emFiMu53toQEecV1Jxtb_r7PUQHZXyTghTnMoBehzPCiQHuA3YJgwr27XZ9rFNlc9xBQl_Qt_HNMd9tqnEDcGbNCl2b-0sOlyWOVgH5RgdBLsocPJzh-jl9uZ5cl9Nn-4eJuNp5Rit-6rWWjtqpVBE2VoB1Z4QYbXQRMigtJ1xKxyTztXBM0-sYECV4MRTCdo7NkQX279dbj-WUHrTxOJgsbAJ2mUxlDLJCaeCr9XLrepyW0qGYLocG5u_DCVmM5j5HWwtn23lXNzO-8PP_-Om84F9A2SEdDc</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Susarrey-Arce, A</creator><creator>Marín, Á. G</creator><creator>Nair, H</creator><creator>Lefferts, L</creator><creator>Gardeniers, J. G. E</creator><creator>Lohse, D</creator><creator>van Houselt, A</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120101</creationdate><title>Absence of an evaporation-driven wetting transition on omniphobic surfaces</title><author>Susarrey-Arce, A ; Marín, Á. G ; Nair, H ; Lefferts, L ; Gardeniers, J. G. E ; Lohse, D ; van Houselt, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-2999c1a65808a28e19d005a959056f89ab4a5c36cc2fd3d0a53e18540d16e9dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Contact angle</topic><topic>Curvature</topic><topic>Droplets</topic><topic>Evaporation</topic><topic>Photolithography</topic><topic>Robustness</topic><topic>Surface roughness</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Susarrey-Arce, A</creatorcontrib><creatorcontrib>Marín, Á. G</creatorcontrib><creatorcontrib>Nair, H</creatorcontrib><creatorcontrib>Lefferts, L</creatorcontrib><creatorcontrib>Gardeniers, J. G. E</creatorcontrib><creatorcontrib>Lohse, D</creatorcontrib><creatorcontrib>van Houselt, A</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Susarrey-Arce, A</au><au>Marín, Á. G</au><au>Nair, H</au><au>Lefferts, L</au><au>Gardeniers, J. G. E</au><au>Lohse, D</au><au>van Houselt, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Absence of an evaporation-driven wetting transition on omniphobic surfaces</atitle><jtitle>Soft matter</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>8</volume><issue>38</issue><spage>9765</spage><epage>977</epage><pages>9765-977</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Surfaces that exhibit contact angles close to 180° for both polar and non-polar solvents are rare. Here we report the fabrication of such "omniphobic" surfaces by photolithography. We investigate their stability against a so-called wetting transition during evaporation of millimetric water droplets by systematically varying the shape and surface roughness of the micropillars on the surface. We show that a low edge curvature of the top of the micropillars strongly delays the transition, while it completely disappears when the surface roughness is increased. We compare these experimental findings with existing models that describe the Cassie-Baxter to Wenzel transition and conclude that new models are needed which include the hurdle of an energy barrier for the wetting transition. Our results reveal that by increasing the roughness of the micropillars we do not affect the apparent equilibrium contact angle of the droplets. The dynamic robustness of the surface is, however, dramatically enhanced by an increase of the surface roughness.
On omniphobic surfaces (both water and oil repellent) droplets can stay in the Cassie-Baxter state their entire life during evaporation, without a transition to the Wenzel state.</abstract><doi>10.1039/c2sm25746g</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2012-01, Vol.8 (38), p.9765-977 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_crossref_primary_10_1039_c2sm25746g |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Contact angle Curvature Droplets Evaporation Photolithography Robustness Surface roughness Wetting |
title | Absence of an evaporation-driven wetting transition on omniphobic surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Absence%20of%20an%20evaporation-driven%20wetting%20transition%20on%20omniphobic%20surfaces&rft.jtitle=Soft%20matter&rft.au=Susarrey-Arce,%20A&rft.date=2012-01-01&rft.volume=8&rft.issue=38&rft.spage=9765&rft.epage=977&rft.pages=9765-977&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c2sm25746g&rft_dat=%3Cproquest_cross%3E1136404154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136404154&rft_id=info:pmid/&rfr_iscdi=true |