Absence of an evaporation-driven wetting transition on omniphobic surfaces

Surfaces that exhibit contact angles close to 180° for both polar and non-polar solvents are rare. Here we report the fabrication of such "omniphobic" surfaces by photolithography. We investigate their stability against a so-called wetting transition during evaporation of millimetric water...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2012-01, Vol.8 (38), p.9765-977
Hauptverfasser: Susarrey-Arce, A, Marín, Á. G, Nair, H, Lefferts, L, Gardeniers, J. G. E, Lohse, D, van Houselt, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 977
container_issue 38
container_start_page 9765
container_title Soft matter
container_volume 8
creator Susarrey-Arce, A
Marín, Á. G
Nair, H
Lefferts, L
Gardeniers, J. G. E
Lohse, D
van Houselt, A
description Surfaces that exhibit contact angles close to 180° for both polar and non-polar solvents are rare. Here we report the fabrication of such "omniphobic" surfaces by photolithography. We investigate their stability against a so-called wetting transition during evaporation of millimetric water droplets by systematically varying the shape and surface roughness of the micropillars on the surface. We show that a low edge curvature of the top of the micropillars strongly delays the transition, while it completely disappears when the surface roughness is increased. We compare these experimental findings with existing models that describe the Cassie-Baxter to Wenzel transition and conclude that new models are needed which include the hurdle of an energy barrier for the wetting transition. Our results reveal that by increasing the roughness of the micropillars we do not affect the apparent equilibrium contact angle of the droplets. The dynamic robustness of the surface is, however, dramatically enhanced by an increase of the surface roughness. On omniphobic surfaces (both water and oil repellent) droplets can stay in the Cassie-Baxter state their entire life during evaporation, without a transition to the Wenzel state.
doi_str_mv 10.1039/c2sm25746g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_c2sm25746g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1136404154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-2999c1a65808a28e19d005a959056f89ab4a5c36cc2fd3d0a53e18540d16e9dc3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsb90LciTCaTB5NlqX4pOBGwV1Ik5sa6WTGZFrx39tSqbgRDtwD38ddHIROKbmihOlrV5emFiMu53toQEecV1Jxtb_r7PUQHZXyTghTnMoBehzPCiQHuA3YJgwr27XZ9rFNlc9xBQl_Qt_HNMd9tqnEDcGbNCl2b-0sOlyWOVgH5RgdBLsocPJzh-jl9uZ5cl9Nn-4eJuNp5Rit-6rWWjtqpVBE2VoB1Z4QYbXQRMigtJ1xKxyTztXBM0-sYECV4MRTCdo7NkQX279dbj-WUHrTxOJgsbAJ2mUxlDLJCaeCr9XLrepyW0qGYLocG5u_DCVmM5j5HWwtn23lXNzO-8PP_-Om84F9A2SEdDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136404154</pqid></control><display><type>article</type><title>Absence of an evaporation-driven wetting transition on omniphobic surfaces</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Susarrey-Arce, A ; Marín, Á. G ; Nair, H ; Lefferts, L ; Gardeniers, J. G. E ; Lohse, D ; van Houselt, A</creator><creatorcontrib>Susarrey-Arce, A ; Marín, Á. G ; Nair, H ; Lefferts, L ; Gardeniers, J. G. E ; Lohse, D ; van Houselt, A</creatorcontrib><description>Surfaces that exhibit contact angles close to 180° for both polar and non-polar solvents are rare. Here we report the fabrication of such "omniphobic" surfaces by photolithography. We investigate their stability against a so-called wetting transition during evaporation of millimetric water droplets by systematically varying the shape and surface roughness of the micropillars on the surface. We show that a low edge curvature of the top of the micropillars strongly delays the transition, while it completely disappears when the surface roughness is increased. We compare these experimental findings with existing models that describe the Cassie-Baxter to Wenzel transition and conclude that new models are needed which include the hurdle of an energy barrier for the wetting transition. Our results reveal that by increasing the roughness of the micropillars we do not affect the apparent equilibrium contact angle of the droplets. The dynamic robustness of the surface is, however, dramatically enhanced by an increase of the surface roughness. On omniphobic surfaces (both water and oil repellent) droplets can stay in the Cassie-Baxter state their entire life during evaporation, without a transition to the Wenzel state.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c2sm25746g</identifier><language>eng</language><subject>Contact angle ; Curvature ; Droplets ; Evaporation ; Photolithography ; Robustness ; Surface roughness ; Wetting</subject><ispartof>Soft matter, 2012-01, Vol.8 (38), p.9765-977</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-2999c1a65808a28e19d005a959056f89ab4a5c36cc2fd3d0a53e18540d16e9dc3</citedby><cites>FETCH-LOGICAL-c312t-2999c1a65808a28e19d005a959056f89ab4a5c36cc2fd3d0a53e18540d16e9dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Susarrey-Arce, A</creatorcontrib><creatorcontrib>Marín, Á. G</creatorcontrib><creatorcontrib>Nair, H</creatorcontrib><creatorcontrib>Lefferts, L</creatorcontrib><creatorcontrib>Gardeniers, J. G. E</creatorcontrib><creatorcontrib>Lohse, D</creatorcontrib><creatorcontrib>van Houselt, A</creatorcontrib><title>Absence of an evaporation-driven wetting transition on omniphobic surfaces</title><title>Soft matter</title><description>Surfaces that exhibit contact angles close to 180° for both polar and non-polar solvents are rare. Here we report the fabrication of such "omniphobic" surfaces by photolithography. We investigate their stability against a so-called wetting transition during evaporation of millimetric water droplets by systematically varying the shape and surface roughness of the micropillars on the surface. We show that a low edge curvature of the top of the micropillars strongly delays the transition, while it completely disappears when the surface roughness is increased. We compare these experimental findings with existing models that describe the Cassie-Baxter to Wenzel transition and conclude that new models are needed which include the hurdle of an energy barrier for the wetting transition. Our results reveal that by increasing the roughness of the micropillars we do not affect the apparent equilibrium contact angle of the droplets. The dynamic robustness of the surface is, however, dramatically enhanced by an increase of the surface roughness. On omniphobic surfaces (both water and oil repellent) droplets can stay in the Cassie-Baxter state their entire life during evaporation, without a transition to the Wenzel state.</description><subject>Contact angle</subject><subject>Curvature</subject><subject>Droplets</subject><subject>Evaporation</subject><subject>Photolithography</subject><subject>Robustness</subject><subject>Surface roughness</subject><subject>Wetting</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKsb90LciTCaTB5NlqX4pOBGwV1Ik5sa6WTGZFrx39tSqbgRDtwD38ddHIROKbmihOlrV5emFiMu53toQEecV1Jxtb_r7PUQHZXyTghTnMoBehzPCiQHuA3YJgwr27XZ9rFNlc9xBQl_Qt_HNMd9tqnEDcGbNCl2b-0sOlyWOVgH5RgdBLsocPJzh-jl9uZ5cl9Nn-4eJuNp5Rit-6rWWjtqpVBE2VoB1Z4QYbXQRMigtJ1xKxyTztXBM0-sYECV4MRTCdo7NkQX279dbj-WUHrTxOJgsbAJ2mUxlDLJCaeCr9XLrepyW0qGYLocG5u_DCVmM5j5HWwtn23lXNzO-8PP_-Om84F9A2SEdDc</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Susarrey-Arce, A</creator><creator>Marín, Á. G</creator><creator>Nair, H</creator><creator>Lefferts, L</creator><creator>Gardeniers, J. G. E</creator><creator>Lohse, D</creator><creator>van Houselt, A</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120101</creationdate><title>Absence of an evaporation-driven wetting transition on omniphobic surfaces</title><author>Susarrey-Arce, A ; Marín, Á. G ; Nair, H ; Lefferts, L ; Gardeniers, J. G. E ; Lohse, D ; van Houselt, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-2999c1a65808a28e19d005a959056f89ab4a5c36cc2fd3d0a53e18540d16e9dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Contact angle</topic><topic>Curvature</topic><topic>Droplets</topic><topic>Evaporation</topic><topic>Photolithography</topic><topic>Robustness</topic><topic>Surface roughness</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Susarrey-Arce, A</creatorcontrib><creatorcontrib>Marín, Á. G</creatorcontrib><creatorcontrib>Nair, H</creatorcontrib><creatorcontrib>Lefferts, L</creatorcontrib><creatorcontrib>Gardeniers, J. G. E</creatorcontrib><creatorcontrib>Lohse, D</creatorcontrib><creatorcontrib>van Houselt, A</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Susarrey-Arce, A</au><au>Marín, Á. G</au><au>Nair, H</au><au>Lefferts, L</au><au>Gardeniers, J. G. E</au><au>Lohse, D</au><au>van Houselt, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Absence of an evaporation-driven wetting transition on omniphobic surfaces</atitle><jtitle>Soft matter</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>8</volume><issue>38</issue><spage>9765</spage><epage>977</epage><pages>9765-977</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Surfaces that exhibit contact angles close to 180° for both polar and non-polar solvents are rare. Here we report the fabrication of such "omniphobic" surfaces by photolithography. We investigate their stability against a so-called wetting transition during evaporation of millimetric water droplets by systematically varying the shape and surface roughness of the micropillars on the surface. We show that a low edge curvature of the top of the micropillars strongly delays the transition, while it completely disappears when the surface roughness is increased. We compare these experimental findings with existing models that describe the Cassie-Baxter to Wenzel transition and conclude that new models are needed which include the hurdle of an energy barrier for the wetting transition. Our results reveal that by increasing the roughness of the micropillars we do not affect the apparent equilibrium contact angle of the droplets. The dynamic robustness of the surface is, however, dramatically enhanced by an increase of the surface roughness. On omniphobic surfaces (both water and oil repellent) droplets can stay in the Cassie-Baxter state their entire life during evaporation, without a transition to the Wenzel state.</abstract><doi>10.1039/c2sm25746g</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2012-01, Vol.8 (38), p.9765-977
issn 1744-683X
1744-6848
language eng
recordid cdi_crossref_primary_10_1039_c2sm25746g
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Contact angle
Curvature
Droplets
Evaporation
Photolithography
Robustness
Surface roughness
Wetting
title Absence of an evaporation-driven wetting transition on omniphobic surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Absence%20of%20an%20evaporation-driven%20wetting%20transition%20on%20omniphobic%20surfaces&rft.jtitle=Soft%20matter&rft.au=Susarrey-Arce,%20A&rft.date=2012-01-01&rft.volume=8&rft.issue=38&rft.spage=9765&rft.epage=977&rft.pages=9765-977&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c2sm25746g&rft_dat=%3Cproquest_cross%3E1136404154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136404154&rft_id=info:pmid/&rfr_iscdi=true