Applying the Z method to estimate temperatures of melting in structure II clathrate hydrates

Equilibrium melting temperatures for structure II THF hydrate and argon/xenon (Ar/Xe) binary hydrate have been calculated using molecular dynamics using two melting techniques, namely the Z method [Belonoshko et al. , Phys. Rev. B , 2006, 73 , 012201] (applied for the first time to complex molecular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2011-11, Vol.13 (44), p.19979-19987
Hauptverfasser: Finney, Aaron R, Rodger, P. Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19987
container_issue 44
container_start_page 19979
container_title Physical chemistry chemical physics : PCCP
container_volume 13
creator Finney, Aaron R
Rodger, P. Mark
description Equilibrium melting temperatures for structure II THF hydrate and argon/xenon (Ar/Xe) binary hydrate have been calculated using molecular dynamics using two melting techniques, namely the Z method [Belonoshko et al. , Phys. Rev. B , 2006, 73 , 012201] (applied for the first time to complex molecular solids) and direct phase coexistence simulations. The two methods give results in moderate agreement: calculations with the Z method give T fus to be 250.7 K (0.77 katm) for THF and 244.3 K (1.86 katm) for Ar/Xe hydrate respectively; the corresponding direct phase coexistence calculations give T fus in the range 235-240 K (0.77 katm) for THF and 240-252.5 K (1.86 katm) for Ar/Xe hydrate. The Z method was found to define the key thermodynamic states with high precision, although required long simulation times with these multicomponent molecular systems to ensure the complete melting required by the method. In contrast, the direct phase coexistence method did bracket the equilibrium temperature with little difficulty, but small thermodynamic driving forces close to phase equilibrium generated long-lived fluctuations, that obscured the precise value of phase coexistence conditions within the bracketed range. Phase coexistence conditions are estimated for multicomponent molecular systems by the Z method (for the first time) and compared with similar estimates from direct phase coexistence calculations.
doi_str_mv 10.1039/c1cp21919g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_c1cp21919g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>902088522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-5b9719c677cc02bc71ee4fed4670fbf3ed075854035fc37da4180ce816e72a43</originalsourceid><addsrcrecordid>eNqF0EtLAzEQB_Agiq2Pi3clHkQQqskmm2yOpfgoFLz0JMKSZifdlX2ZZA_99u7S2t70NIH5zWT4I3RFySMlTD0ZatqIKqrWR2hMuWATRRJ-vH9LMUJn3n8RQmhM2Ska9VoxTqIx-py2bbkp6jUOOeAPXEHImwyHBoMPRaUD4ABVC06HzoHHje1JGYaBosY-uM4MDTyfY1PqkLthIt9kQ_UX6MTq0sPlrp6j5cvzcvY2Wby_zmfTxcQwJcIkXilJlRFSGkOilZEUgFvIuJDEriyDjMg4iTlhsTVMZprThBhIqAAZac7O0f12beua766_O60Kb6AsdQ1N51MlWKI4UfJ_SSKSJHEU9fJhK41rvHdg09b1cbhNSkk6pJ4eUu_xzW5tt6og29PfmHtwtwPaG11ap2tT-IPjUog4Gu673Trnzb57-ChtM9ub678M-wHIVZ_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>902088522</pqid></control><display><type>article</type><title>Applying the Z method to estimate temperatures of melting in structure II clathrate hydrates</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Finney, Aaron R ; Rodger, P. Mark</creator><creatorcontrib>Finney, Aaron R ; Rodger, P. Mark</creatorcontrib><description>Equilibrium melting temperatures for structure II THF hydrate and argon/xenon (Ar/Xe) binary hydrate have been calculated using molecular dynamics using two melting techniques, namely the Z method [Belonoshko et al. , Phys. Rev. B , 2006, 73 , 012201] (applied for the first time to complex molecular solids) and direct phase coexistence simulations. The two methods give results in moderate agreement: calculations with the Z method give T fus to be 250.7 K (0.77 katm) for THF and 244.3 K (1.86 katm) for Ar/Xe hydrate respectively; the corresponding direct phase coexistence calculations give T fus in the range 235-240 K (0.77 katm) for THF and 240-252.5 K (1.86 katm) for Ar/Xe hydrate. The Z method was found to define the key thermodynamic states with high precision, although required long simulation times with these multicomponent molecular systems to ensure the complete melting required by the method. In contrast, the direct phase coexistence method did bracket the equilibrium temperature with little difficulty, but small thermodynamic driving forces close to phase equilibrium generated long-lived fluctuations, that obscured the precise value of phase coexistence conditions within the bracketed range. Phase coexistence conditions are estimated for multicomponent molecular systems by the Z method (for the first time) and compared with similar estimates from direct phase coexistence calculations.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c1cp21919g</identifier><identifier>PMID: 21993402</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemistry ; Clathrate hydrates ; Driving conditions ; Exact sciences and technology ; General and physical chemistry ; Hydrates ; Mathematical analysis ; Melting ; Molecular structure ; Simulation ; Thermodynamics</subject><ispartof>Physical chemistry chemical physics : PCCP, 2011-11, Vol.13 (44), p.19979-19987</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-5b9719c677cc02bc71ee4fed4670fbf3ed075854035fc37da4180ce816e72a43</citedby><cites>FETCH-LOGICAL-c396t-5b9719c677cc02bc71ee4fed4670fbf3ed075854035fc37da4180ce816e72a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24766527$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21993402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Finney, Aaron R</creatorcontrib><creatorcontrib>Rodger, P. Mark</creatorcontrib><title>Applying the Z method to estimate temperatures of melting in structure II clathrate hydrates</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Equilibrium melting temperatures for structure II THF hydrate and argon/xenon (Ar/Xe) binary hydrate have been calculated using molecular dynamics using two melting techniques, namely the Z method [Belonoshko et al. , Phys. Rev. B , 2006, 73 , 012201] (applied for the first time to complex molecular solids) and direct phase coexistence simulations. The two methods give results in moderate agreement: calculations with the Z method give T fus to be 250.7 K (0.77 katm) for THF and 244.3 K (1.86 katm) for Ar/Xe hydrate respectively; the corresponding direct phase coexistence calculations give T fus in the range 235-240 K (0.77 katm) for THF and 240-252.5 K (1.86 katm) for Ar/Xe hydrate. The Z method was found to define the key thermodynamic states with high precision, although required long simulation times with these multicomponent molecular systems to ensure the complete melting required by the method. In contrast, the direct phase coexistence method did bracket the equilibrium temperature with little difficulty, but small thermodynamic driving forces close to phase equilibrium generated long-lived fluctuations, that obscured the precise value of phase coexistence conditions within the bracketed range. Phase coexistence conditions are estimated for multicomponent molecular systems by the Z method (for the first time) and compared with similar estimates from direct phase coexistence calculations.</description><subject>Chemistry</subject><subject>Clathrate hydrates</subject><subject>Driving conditions</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrates</subject><subject>Mathematical analysis</subject><subject>Melting</subject><subject>Molecular structure</subject><subject>Simulation</subject><subject>Thermodynamics</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqF0EtLAzEQB_Agiq2Pi3clHkQQqskmm2yOpfgoFLz0JMKSZifdlX2ZZA_99u7S2t70NIH5zWT4I3RFySMlTD0ZatqIKqrWR2hMuWATRRJ-vH9LMUJn3n8RQmhM2Ska9VoxTqIx-py2bbkp6jUOOeAPXEHImwyHBoMPRaUD4ABVC06HzoHHje1JGYaBosY-uM4MDTyfY1PqkLthIt9kQ_UX6MTq0sPlrp6j5cvzcvY2Wby_zmfTxcQwJcIkXilJlRFSGkOilZEUgFvIuJDEriyDjMg4iTlhsTVMZprThBhIqAAZac7O0f12beua766_O60Kb6AsdQ1N51MlWKI4UfJ_SSKSJHEU9fJhK41rvHdg09b1cbhNSkk6pJ4eUu_xzW5tt6og29PfmHtwtwPaG11ap2tT-IPjUog4Gu673Trnzb57-ChtM9ub678M-wHIVZ_s</recordid><startdate>20111128</startdate><enddate>20111128</enddate><creator>Finney, Aaron R</creator><creator>Rodger, P. Mark</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20111128</creationdate><title>Applying the Z method to estimate temperatures of melting in structure II clathrate hydrates</title><author>Finney, Aaron R ; Rodger, P. Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-5b9719c677cc02bc71ee4fed4670fbf3ed075854035fc37da4180ce816e72a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Chemistry</topic><topic>Clathrate hydrates</topic><topic>Driving conditions</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrates</topic><topic>Mathematical analysis</topic><topic>Melting</topic><topic>Molecular structure</topic><topic>Simulation</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finney, Aaron R</creatorcontrib><creatorcontrib>Rodger, P. Mark</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finney, Aaron R</au><au>Rodger, P. Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying the Z method to estimate temperatures of melting in structure II clathrate hydrates</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2011-11-28</date><risdate>2011</risdate><volume>13</volume><issue>44</issue><spage>19979</spage><epage>19987</epage><pages>19979-19987</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Equilibrium melting temperatures for structure II THF hydrate and argon/xenon (Ar/Xe) binary hydrate have been calculated using molecular dynamics using two melting techniques, namely the Z method [Belonoshko et al. , Phys. Rev. B , 2006, 73 , 012201] (applied for the first time to complex molecular solids) and direct phase coexistence simulations. The two methods give results in moderate agreement: calculations with the Z method give T fus to be 250.7 K (0.77 katm) for THF and 244.3 K (1.86 katm) for Ar/Xe hydrate respectively; the corresponding direct phase coexistence calculations give T fus in the range 235-240 K (0.77 katm) for THF and 240-252.5 K (1.86 katm) for Ar/Xe hydrate. The Z method was found to define the key thermodynamic states with high precision, although required long simulation times with these multicomponent molecular systems to ensure the complete melting required by the method. In contrast, the direct phase coexistence method did bracket the equilibrium temperature with little difficulty, but small thermodynamic driving forces close to phase equilibrium generated long-lived fluctuations, that obscured the precise value of phase coexistence conditions within the bracketed range. Phase coexistence conditions are estimated for multicomponent molecular systems by the Z method (for the first time) and compared with similar estimates from direct phase coexistence calculations.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>21993402</pmid><doi>10.1039/c1cp21919g</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2011-11, Vol.13 (44), p.19979-19987
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_c1cp21919g
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chemistry
Clathrate hydrates
Driving conditions
Exact sciences and technology
General and physical chemistry
Hydrates
Mathematical analysis
Melting
Molecular structure
Simulation
Thermodynamics
title Applying the Z method to estimate temperatures of melting in structure II clathrate hydrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A10%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20the%20Z%20method%20to%20estimate%20temperatures%20of%20melting%20in%20structure%20II%20clathrate%20hydrates&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Finney,%20Aaron%20R&rft.date=2011-11-28&rft.volume=13&rft.issue=44&rft.spage=19979&rft.epage=19987&rft.pages=19979-19987&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c1cp21919g&rft_dat=%3Cproquest_cross%3E902088522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=902088522&rft_id=info:pmid/21993402&rfr_iscdi=true