An inorganic water-based paint for high-durability passive radiative cooling
Due to the extreme reflectivity requirements of radiative cooling coatings, these materials often employ ceramic nanoparticles such as TiO 2 due to their high refractive index and scattering efficiency. However, the bandgap of TiO 2 (3.2 eV) is lower than the energy of the most energetic solar light...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2025 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | |
creator | Li, Siyuan Zhang, Xianglin Yang, Yanfei Li, Xin Xu, Hongbo Zhao, Juyan Pattelli, Lorenzo Pan, Lei Zhao, Jiupeng Li, Yao |
description | Due to the extreme reflectivity requirements of radiative cooling coatings, these materials often employ ceramic nanoparticles such as TiO 2 due to their high refractive index and scattering efficiency. However, the bandgap of TiO 2 (3.2 eV) is lower than the energy of the most energetic solar light, leading to significant absorption in the UV range (0.25–0.4 μm) and subsequent oxidation aging and yellowing of particles and/or organic binders. To overcome the conflict between high reflective efficiency and UV durability, formulations using high-bandgap materials can be used despite their lower refractive index. In this work, we describe an optimized PRC-Al 2 O 3 coating by adjusting the ratio of low refractive index alumina particles to sodium methylsilicate adhesive. The PRC-Al 2 O 3 exhibits a high solar reflectance above 0.96 and a high mid-infrared emissivity of 0.92, enabling it to achieve a maximum theoretical cooling power of 109 W m −2 . Following continuous UV irradiation with a power of 0.7 kW m −2 for 72 hours, only a marginal 0.2% decline in solar reflectance occurred compared to the unaged coatings. The resulting anti-aging cooling paint is scalable and can be spray-coated onto outdoor structures and containers, providing durable radiative cooling towards real-world applications. |
doi_str_mv | 10.1039/D4TC04108A |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4TC04108A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D4TC04108A</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1039_D4TC04108A3</originalsourceid><addsrcrecordid>eNqVjjsLwjAUhYMoWNTFX5BZqCb2YR3FBw6O3cttm7ZXaiI3Uem_V0F09izng3OGj7GpFHMpgvViF6ZbEUqRbHrMW4pI-KsoCPtfXsZDNrH2LF5JZJzEa4-dNpqjNlSDxoI_wCnyc7Cq5FdA7XhliDdYN355I8ixRde9FmvxrjhBieDeVBjToq7HbFBBa9Xk0yM2O-zT7dEvyFhLqsquhBegLpMieytnP-Xgr_MTB4hHDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An inorganic water-based paint for high-durability passive radiative cooling</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Siyuan ; Zhang, Xianglin ; Yang, Yanfei ; Li, Xin ; Xu, Hongbo ; Zhao, Juyan ; Pattelli, Lorenzo ; Pan, Lei ; Zhao, Jiupeng ; Li, Yao</creator><creatorcontrib>Li, Siyuan ; Zhang, Xianglin ; Yang, Yanfei ; Li, Xin ; Xu, Hongbo ; Zhao, Juyan ; Pattelli, Lorenzo ; Pan, Lei ; Zhao, Jiupeng ; Li, Yao</creatorcontrib><description>Due to the extreme reflectivity requirements of radiative cooling coatings, these materials often employ ceramic nanoparticles such as TiO 2 due to their high refractive index and scattering efficiency. However, the bandgap of TiO 2 (3.2 eV) is lower than the energy of the most energetic solar light, leading to significant absorption in the UV range (0.25–0.4 μm) and subsequent oxidation aging and yellowing of particles and/or organic binders. To overcome the conflict between high reflective efficiency and UV durability, formulations using high-bandgap materials can be used despite their lower refractive index. In this work, we describe an optimized PRC-Al 2 O 3 coating by adjusting the ratio of low refractive index alumina particles to sodium methylsilicate adhesive. The PRC-Al 2 O 3 exhibits a high solar reflectance above 0.96 and a high mid-infrared emissivity of 0.92, enabling it to achieve a maximum theoretical cooling power of 109 W m −2 . Following continuous UV irradiation with a power of 0.7 kW m −2 for 72 hours, only a marginal 0.2% decline in solar reflectance occurred compared to the unaged coatings. The resulting anti-aging cooling paint is scalable and can be spray-coated onto outdoor structures and containers, providing durable radiative cooling towards real-world applications.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/D4TC04108A</identifier><language>eng</language><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2025</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1039_D4TC04108A3</cites><orcidid>0000-0001-5271-7562 ; 0000-0001-7605-2534 ; 0000-0001-5040-5282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Li, Siyuan</creatorcontrib><creatorcontrib>Zhang, Xianglin</creatorcontrib><creatorcontrib>Yang, Yanfei</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Xu, Hongbo</creatorcontrib><creatorcontrib>Zhao, Juyan</creatorcontrib><creatorcontrib>Pattelli, Lorenzo</creatorcontrib><creatorcontrib>Pan, Lei</creatorcontrib><creatorcontrib>Zhao, Jiupeng</creatorcontrib><creatorcontrib>Li, Yao</creatorcontrib><title>An inorganic water-based paint for high-durability passive radiative cooling</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Due to the extreme reflectivity requirements of radiative cooling coatings, these materials often employ ceramic nanoparticles such as TiO 2 due to their high refractive index and scattering efficiency. However, the bandgap of TiO 2 (3.2 eV) is lower than the energy of the most energetic solar light, leading to significant absorption in the UV range (0.25–0.4 μm) and subsequent oxidation aging and yellowing of particles and/or organic binders. To overcome the conflict between high reflective efficiency and UV durability, formulations using high-bandgap materials can be used despite their lower refractive index. In this work, we describe an optimized PRC-Al 2 O 3 coating by adjusting the ratio of low refractive index alumina particles to sodium methylsilicate adhesive. The PRC-Al 2 O 3 exhibits a high solar reflectance above 0.96 and a high mid-infrared emissivity of 0.92, enabling it to achieve a maximum theoretical cooling power of 109 W m −2 . Following continuous UV irradiation with a power of 0.7 kW m −2 for 72 hours, only a marginal 0.2% decline in solar reflectance occurred compared to the unaged coatings. The resulting anti-aging cooling paint is scalable and can be spray-coated onto outdoor structures and containers, providing durable radiative cooling towards real-world applications.</description><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqVjjsLwjAUhYMoWNTFX5BZqCb2YR3FBw6O3cttm7ZXaiI3Uem_V0F09izng3OGj7GpFHMpgvViF6ZbEUqRbHrMW4pI-KsoCPtfXsZDNrH2LF5JZJzEa4-dNpqjNlSDxoI_wCnyc7Cq5FdA7XhliDdYN355I8ixRde9FmvxrjhBieDeVBjToq7HbFBBa9Xk0yM2O-zT7dEvyFhLqsquhBegLpMieytnP-Xgr_MTB4hHDQ</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Li, Siyuan</creator><creator>Zhang, Xianglin</creator><creator>Yang, Yanfei</creator><creator>Li, Xin</creator><creator>Xu, Hongbo</creator><creator>Zhao, Juyan</creator><creator>Pattelli, Lorenzo</creator><creator>Pan, Lei</creator><creator>Zhao, Jiupeng</creator><creator>Li, Yao</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5271-7562</orcidid><orcidid>https://orcid.org/0000-0001-7605-2534</orcidid><orcidid>https://orcid.org/0000-0001-5040-5282</orcidid></search><sort><creationdate>2025</creationdate><title>An inorganic water-based paint for high-durability passive radiative cooling</title><author>Li, Siyuan ; Zhang, Xianglin ; Yang, Yanfei ; Li, Xin ; Xu, Hongbo ; Zhao, Juyan ; Pattelli, Lorenzo ; Pan, Lei ; Zhao, Jiupeng ; Li, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1039_D4TC04108A3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Siyuan</creatorcontrib><creatorcontrib>Zhang, Xianglin</creatorcontrib><creatorcontrib>Yang, Yanfei</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Xu, Hongbo</creatorcontrib><creatorcontrib>Zhao, Juyan</creatorcontrib><creatorcontrib>Pattelli, Lorenzo</creatorcontrib><creatorcontrib>Pan, Lei</creatorcontrib><creatorcontrib>Zhao, Jiupeng</creatorcontrib><creatorcontrib>Li, Yao</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Siyuan</au><au>Zhang, Xianglin</au><au>Yang, Yanfei</au><au>Li, Xin</au><au>Xu, Hongbo</au><au>Zhao, Juyan</au><au>Pattelli, Lorenzo</au><au>Pan, Lei</au><au>Zhao, Jiupeng</au><au>Li, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An inorganic water-based paint for high-durability passive radiative cooling</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2025</date><risdate>2025</risdate><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Due to the extreme reflectivity requirements of radiative cooling coatings, these materials often employ ceramic nanoparticles such as TiO 2 due to their high refractive index and scattering efficiency. However, the bandgap of TiO 2 (3.2 eV) is lower than the energy of the most energetic solar light, leading to significant absorption in the UV range (0.25–0.4 μm) and subsequent oxidation aging and yellowing of particles and/or organic binders. To overcome the conflict between high reflective efficiency and UV durability, formulations using high-bandgap materials can be used despite their lower refractive index. In this work, we describe an optimized PRC-Al 2 O 3 coating by adjusting the ratio of low refractive index alumina particles to sodium methylsilicate adhesive. The PRC-Al 2 O 3 exhibits a high solar reflectance above 0.96 and a high mid-infrared emissivity of 0.92, enabling it to achieve a maximum theoretical cooling power of 109 W m −2 . Following continuous UV irradiation with a power of 0.7 kW m −2 for 72 hours, only a marginal 0.2% decline in solar reflectance occurred compared to the unaged coatings. The resulting anti-aging cooling paint is scalable and can be spray-coated onto outdoor structures and containers, providing durable radiative cooling towards real-world applications.</abstract><doi>10.1039/D4TC04108A</doi><orcidid>https://orcid.org/0000-0001-5271-7562</orcidid><orcidid>https://orcid.org/0000-0001-7605-2534</orcidid><orcidid>https://orcid.org/0000-0001-5040-5282</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2025 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D4TC04108A |
source | Royal Society Of Chemistry Journals 2008- |
title | An inorganic water-based paint for high-durability passive radiative cooling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20inorganic%20water-based%20paint%20for%20high-durability%20passive%20radiative%20cooling&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Li,%20Siyuan&rft.date=2025&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/D4TC04108A&rft_dat=%3Ccrossref%3E10_1039_D4TC04108A%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |