An inorganic water-based paint for high-durability passive radiative cooling

Due to the extreme reflectivity requirements of radiative cooling coatings, these materials often employ ceramic nanoparticles such as TiO 2 due to their high refractive index and scattering efficiency. However, the bandgap of TiO 2 (3.2 eV) is lower than the energy of the most energetic solar light...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2025
Hauptverfasser: Li, Siyuan, Zhang, Xianglin, Yang, Yanfei, Li, Xin, Xu, Hongbo, Zhao, Juyan, Pattelli, Lorenzo, Pan, Lei, Zhao, Jiupeng, Li, Yao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume
creator Li, Siyuan
Zhang, Xianglin
Yang, Yanfei
Li, Xin
Xu, Hongbo
Zhao, Juyan
Pattelli, Lorenzo
Pan, Lei
Zhao, Jiupeng
Li, Yao
description Due to the extreme reflectivity requirements of radiative cooling coatings, these materials often employ ceramic nanoparticles such as TiO 2 due to their high refractive index and scattering efficiency. However, the bandgap of TiO 2 (3.2 eV) is lower than the energy of the most energetic solar light, leading to significant absorption in the UV range (0.25–0.4 μm) and subsequent oxidation aging and yellowing of particles and/or organic binders. To overcome the conflict between high reflective efficiency and UV durability, formulations using high-bandgap materials can be used despite their lower refractive index. In this work, we describe an optimized PRC-Al 2 O 3 coating by adjusting the ratio of low refractive index alumina particles to sodium methylsilicate adhesive. The PRC-Al 2 O 3 exhibits a high solar reflectance above 0.96 and a high mid-infrared emissivity of 0.92, enabling it to achieve a maximum theoretical cooling power of 109 W m −2 . Following continuous UV irradiation with a power of 0.7 kW m −2 for 72 hours, only a marginal 0.2% decline in solar reflectance occurred compared to the unaged coatings. The resulting anti-aging cooling paint is scalable and can be spray-coated onto outdoor structures and containers, providing durable radiative cooling towards real-world applications.
doi_str_mv 10.1039/D4TC04108A
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4TC04108A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D4TC04108A</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1039_D4TC04108A3</originalsourceid><addsrcrecordid>eNqVjjsLwjAUhYMoWNTFX5BZqCb2YR3FBw6O3cttm7ZXaiI3Uem_V0F09izng3OGj7GpFHMpgvViF6ZbEUqRbHrMW4pI-KsoCPtfXsZDNrH2LF5JZJzEa4-dNpqjNlSDxoI_wCnyc7Cq5FdA7XhliDdYN355I8ixRde9FmvxrjhBieDeVBjToq7HbFBBa9Xk0yM2O-zT7dEvyFhLqsquhBegLpMieytnP-Xgr_MTB4hHDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An inorganic water-based paint for high-durability passive radiative cooling</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Siyuan ; Zhang, Xianglin ; Yang, Yanfei ; Li, Xin ; Xu, Hongbo ; Zhao, Juyan ; Pattelli, Lorenzo ; Pan, Lei ; Zhao, Jiupeng ; Li, Yao</creator><creatorcontrib>Li, Siyuan ; Zhang, Xianglin ; Yang, Yanfei ; Li, Xin ; Xu, Hongbo ; Zhao, Juyan ; Pattelli, Lorenzo ; Pan, Lei ; Zhao, Jiupeng ; Li, Yao</creatorcontrib><description>Due to the extreme reflectivity requirements of radiative cooling coatings, these materials often employ ceramic nanoparticles such as TiO 2 due to their high refractive index and scattering efficiency. However, the bandgap of TiO 2 (3.2 eV) is lower than the energy of the most energetic solar light, leading to significant absorption in the UV range (0.25–0.4 μm) and subsequent oxidation aging and yellowing of particles and/or organic binders. To overcome the conflict between high reflective efficiency and UV durability, formulations using high-bandgap materials can be used despite their lower refractive index. In this work, we describe an optimized PRC-Al 2 O 3 coating by adjusting the ratio of low refractive index alumina particles to sodium methylsilicate adhesive. The PRC-Al 2 O 3 exhibits a high solar reflectance above 0.96 and a high mid-infrared emissivity of 0.92, enabling it to achieve a maximum theoretical cooling power of 109 W m −2 . Following continuous UV irradiation with a power of 0.7 kW m −2 for 72 hours, only a marginal 0.2% decline in solar reflectance occurred compared to the unaged coatings. The resulting anti-aging cooling paint is scalable and can be spray-coated onto outdoor structures and containers, providing durable radiative cooling towards real-world applications.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/D4TC04108A</identifier><language>eng</language><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2025</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1039_D4TC04108A3</cites><orcidid>0000-0001-5271-7562 ; 0000-0001-7605-2534 ; 0000-0001-5040-5282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Li, Siyuan</creatorcontrib><creatorcontrib>Zhang, Xianglin</creatorcontrib><creatorcontrib>Yang, Yanfei</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Xu, Hongbo</creatorcontrib><creatorcontrib>Zhao, Juyan</creatorcontrib><creatorcontrib>Pattelli, Lorenzo</creatorcontrib><creatorcontrib>Pan, Lei</creatorcontrib><creatorcontrib>Zhao, Jiupeng</creatorcontrib><creatorcontrib>Li, Yao</creatorcontrib><title>An inorganic water-based paint for high-durability passive radiative cooling</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Due to the extreme reflectivity requirements of radiative cooling coatings, these materials often employ ceramic nanoparticles such as TiO 2 due to their high refractive index and scattering efficiency. However, the bandgap of TiO 2 (3.2 eV) is lower than the energy of the most energetic solar light, leading to significant absorption in the UV range (0.25–0.4 μm) and subsequent oxidation aging and yellowing of particles and/or organic binders. To overcome the conflict between high reflective efficiency and UV durability, formulations using high-bandgap materials can be used despite their lower refractive index. In this work, we describe an optimized PRC-Al 2 O 3 coating by adjusting the ratio of low refractive index alumina particles to sodium methylsilicate adhesive. The PRC-Al 2 O 3 exhibits a high solar reflectance above 0.96 and a high mid-infrared emissivity of 0.92, enabling it to achieve a maximum theoretical cooling power of 109 W m −2 . Following continuous UV irradiation with a power of 0.7 kW m −2 for 72 hours, only a marginal 0.2% decline in solar reflectance occurred compared to the unaged coatings. The resulting anti-aging cooling paint is scalable and can be spray-coated onto outdoor structures and containers, providing durable radiative cooling towards real-world applications.</description><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqVjjsLwjAUhYMoWNTFX5BZqCb2YR3FBw6O3cttm7ZXaiI3Uem_V0F09izng3OGj7GpFHMpgvViF6ZbEUqRbHrMW4pI-KsoCPtfXsZDNrH2LF5JZJzEa4-dNpqjNlSDxoI_wCnyc7Cq5FdA7XhliDdYN355I8ixRde9FmvxrjhBieDeVBjToq7HbFBBa9Xk0yM2O-zT7dEvyFhLqsquhBegLpMieytnP-Xgr_MTB4hHDQ</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Li, Siyuan</creator><creator>Zhang, Xianglin</creator><creator>Yang, Yanfei</creator><creator>Li, Xin</creator><creator>Xu, Hongbo</creator><creator>Zhao, Juyan</creator><creator>Pattelli, Lorenzo</creator><creator>Pan, Lei</creator><creator>Zhao, Jiupeng</creator><creator>Li, Yao</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5271-7562</orcidid><orcidid>https://orcid.org/0000-0001-7605-2534</orcidid><orcidid>https://orcid.org/0000-0001-5040-5282</orcidid></search><sort><creationdate>2025</creationdate><title>An inorganic water-based paint for high-durability passive radiative cooling</title><author>Li, Siyuan ; Zhang, Xianglin ; Yang, Yanfei ; Li, Xin ; Xu, Hongbo ; Zhao, Juyan ; Pattelli, Lorenzo ; Pan, Lei ; Zhao, Jiupeng ; Li, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1039_D4TC04108A3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Siyuan</creatorcontrib><creatorcontrib>Zhang, Xianglin</creatorcontrib><creatorcontrib>Yang, Yanfei</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Xu, Hongbo</creatorcontrib><creatorcontrib>Zhao, Juyan</creatorcontrib><creatorcontrib>Pattelli, Lorenzo</creatorcontrib><creatorcontrib>Pan, Lei</creatorcontrib><creatorcontrib>Zhao, Jiupeng</creatorcontrib><creatorcontrib>Li, Yao</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Siyuan</au><au>Zhang, Xianglin</au><au>Yang, Yanfei</au><au>Li, Xin</au><au>Xu, Hongbo</au><au>Zhao, Juyan</au><au>Pattelli, Lorenzo</au><au>Pan, Lei</au><au>Zhao, Jiupeng</au><au>Li, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An inorganic water-based paint for high-durability passive radiative cooling</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2025</date><risdate>2025</risdate><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Due to the extreme reflectivity requirements of radiative cooling coatings, these materials often employ ceramic nanoparticles such as TiO 2 due to their high refractive index and scattering efficiency. However, the bandgap of TiO 2 (3.2 eV) is lower than the energy of the most energetic solar light, leading to significant absorption in the UV range (0.25–0.4 μm) and subsequent oxidation aging and yellowing of particles and/or organic binders. To overcome the conflict between high reflective efficiency and UV durability, formulations using high-bandgap materials can be used despite their lower refractive index. In this work, we describe an optimized PRC-Al 2 O 3 coating by adjusting the ratio of low refractive index alumina particles to sodium methylsilicate adhesive. The PRC-Al 2 O 3 exhibits a high solar reflectance above 0.96 and a high mid-infrared emissivity of 0.92, enabling it to achieve a maximum theoretical cooling power of 109 W m −2 . Following continuous UV irradiation with a power of 0.7 kW m −2 for 72 hours, only a marginal 0.2% decline in solar reflectance occurred compared to the unaged coatings. The resulting anti-aging cooling paint is scalable and can be spray-coated onto outdoor structures and containers, providing durable radiative cooling towards real-world applications.</abstract><doi>10.1039/D4TC04108A</doi><orcidid>https://orcid.org/0000-0001-5271-7562</orcidid><orcidid>https://orcid.org/0000-0001-7605-2534</orcidid><orcidid>https://orcid.org/0000-0001-5040-5282</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2025
issn 2050-7526
2050-7534
language eng
recordid cdi_crossref_primary_10_1039_D4TC04108A
source Royal Society Of Chemistry Journals 2008-
title An inorganic water-based paint for high-durability passive radiative cooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20inorganic%20water-based%20paint%20for%20high-durability%20passive%20radiative%20cooling&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Li,%20Siyuan&rft.date=2025&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/D4TC04108A&rft_dat=%3Ccrossref%3E10_1039_D4TC04108A%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true