Synthesis and DFT study of NH 2 -MOF235(Fe)-derived ZnFe 2 O 4 –Fe 2 O 3 –ZnO multiple heterojunction nanocomposites for triethylamine gas detection

Metal oxide semiconductor (MOS)-based gas sensing materials are highly suitable for gas sensor development due to their exceptional physicochemical properties. Enhancing performance through metal–organic framework (MOF) derivatization and heterojunction construction has emerged as a promising strate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2025
Hauptverfasser: Zhu, Hang, Li, Panpan, Li, Chengfeng, Zhao, Xuanwei, Lu, Fanghao, Sun, Haoyang, Yang, Tianye, Lan, Yubin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume
creator Zhu, Hang
Li, Panpan
Li, Chengfeng
Zhao, Xuanwei
Lu, Fanghao
Sun, Haoyang
Yang, Tianye
Lan, Yubin
description Metal oxide semiconductor (MOS)-based gas sensing materials are highly suitable for gas sensor development due to their exceptional physicochemical properties. Enhancing performance through metal–organic framework (MOF) derivatization and heterojunction construction has emerged as a promising strategy. In this study, NH 2 -MOF235(Fe) was first synthesized as a precursor for the growth of MOF-5 on a MOF framework, leading to the successful fabrication of ZnFe 2 O 4 –Fe 2 O 3 –ZnO multi-heterostructure nanocomposites derived from NH 2 -MOF235(Fe)@MOF5 MOF-on-MOF via a precisely controlled stepwise solvothermal method. Gas-sensitivity evaluations revealed that the ZZF4 sensor exhibited outstanding TEA sensing performance, achieving a response value of 44.9 to 50 ppm TEA, which is 10.3 times higher than that of the F1 sample. The sensor demonstrated a rapid response time of 1 second and a low detection limit of 0.5 ppm. Comprehensive characterization through XPS, UV-vis, PL, and Raman spectroscopy attributed the superior performance to the tunable electronic structure of ZnFe 2 O 4 –Fe 2 O 3 –ZnO heterojunctions and optimized interfacial reactions, including enhanced surface adsorption sites, interfacial charge transport, and adsorption energy. First-principles calculation performed with VASP further validated the role of electronic structure modulation and heterogeneous interface optimization in improving gas-sensing properties. Additionally, this study elucidated the TEA sensing mechanism and performance variations among heterostructure materials with different compositions. These findings offer a robust strategy for the synthesis of MOF-on-MOF-derived multi-heterojunction nanocomposites and provide a pathway for advancing electronic structure engineering and interfacial optimization in gas-sensing applications.
doi_str_mv 10.1039/D4TA07093C
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4TA07093C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D4TA07093C</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1039_D4TA07093C3</originalsourceid><addsrcrecordid>eNqVj7FOwzAYhC0EEhV04Qn-EZACTpy2yYharC6QgUxdIiv5Q1wlduTfQcrGO7DwfDwJKapg5pb7pLsbjrGrkN-FXKT3mzh_4CueivUJm0V8wYNVnC5PfzlJztmcaM8nJZwv03TGPl9G4xskTaBMBRuZA_mhGsHW8LyFCIKnTEZicS3xJqjQ6TesYGckTlEGMXy9fxxZHHhnMuiG1uu-RWjQo7P7wZReWwNGGVvarrekPRLU1oF3Gn0ztqrTBuFVEVTT5qd-yc5q1RLOj37BbuVjvt4GpbNEDuuid7pTbixCXhzuF3_3xb_K3zQWYJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthesis and DFT study of NH 2 -MOF235(Fe)-derived ZnFe 2 O 4 –Fe 2 O 3 –ZnO multiple heterojunction nanocomposites for triethylamine gas detection</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhu, Hang ; Li, Panpan ; Li, Chengfeng ; Zhao, Xuanwei ; Lu, Fanghao ; Sun, Haoyang ; Yang, Tianye ; Lan, Yubin</creator><creatorcontrib>Zhu, Hang ; Li, Panpan ; Li, Chengfeng ; Zhao, Xuanwei ; Lu, Fanghao ; Sun, Haoyang ; Yang, Tianye ; Lan, Yubin</creatorcontrib><description>Metal oxide semiconductor (MOS)-based gas sensing materials are highly suitable for gas sensor development due to their exceptional physicochemical properties. Enhancing performance through metal–organic framework (MOF) derivatization and heterojunction construction has emerged as a promising strategy. In this study, NH 2 -MOF235(Fe) was first synthesized as a precursor for the growth of MOF-5 on a MOF framework, leading to the successful fabrication of ZnFe 2 O 4 –Fe 2 O 3 –ZnO multi-heterostructure nanocomposites derived from NH 2 -MOF235(Fe)@MOF5 MOF-on-MOF via a precisely controlled stepwise solvothermal method. Gas-sensitivity evaluations revealed that the ZZF4 sensor exhibited outstanding TEA sensing performance, achieving a response value of 44.9 to 50 ppm TEA, which is 10.3 times higher than that of the F1 sample. The sensor demonstrated a rapid response time of 1 second and a low detection limit of 0.5 ppm. Comprehensive characterization through XPS, UV-vis, PL, and Raman spectroscopy attributed the superior performance to the tunable electronic structure of ZnFe 2 O 4 –Fe 2 O 3 –ZnO heterojunctions and optimized interfacial reactions, including enhanced surface adsorption sites, interfacial charge transport, and adsorption energy. First-principles calculation performed with VASP further validated the role of electronic structure modulation and heterogeneous interface optimization in improving gas-sensing properties. Additionally, this study elucidated the TEA sensing mechanism and performance variations among heterostructure materials with different compositions. These findings offer a robust strategy for the synthesis of MOF-on-MOF-derived multi-heterojunction nanocomposites and provide a pathway for advancing electronic structure engineering and interfacial optimization in gas-sensing applications.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D4TA07093C</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2025</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1039_D4TA07093C3</cites><orcidid>0000-0002-0617-5202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhu, Hang</creatorcontrib><creatorcontrib>Li, Panpan</creatorcontrib><creatorcontrib>Li, Chengfeng</creatorcontrib><creatorcontrib>Zhao, Xuanwei</creatorcontrib><creatorcontrib>Lu, Fanghao</creatorcontrib><creatorcontrib>Sun, Haoyang</creatorcontrib><creatorcontrib>Yang, Tianye</creatorcontrib><creatorcontrib>Lan, Yubin</creatorcontrib><title>Synthesis and DFT study of NH 2 -MOF235(Fe)-derived ZnFe 2 O 4 –Fe 2 O 3 –ZnO multiple heterojunction nanocomposites for triethylamine gas detection</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Metal oxide semiconductor (MOS)-based gas sensing materials are highly suitable for gas sensor development due to their exceptional physicochemical properties. Enhancing performance through metal–organic framework (MOF) derivatization and heterojunction construction has emerged as a promising strategy. In this study, NH 2 -MOF235(Fe) was first synthesized as a precursor for the growth of MOF-5 on a MOF framework, leading to the successful fabrication of ZnFe 2 O 4 –Fe 2 O 3 –ZnO multi-heterostructure nanocomposites derived from NH 2 -MOF235(Fe)@MOF5 MOF-on-MOF via a precisely controlled stepwise solvothermal method. Gas-sensitivity evaluations revealed that the ZZF4 sensor exhibited outstanding TEA sensing performance, achieving a response value of 44.9 to 50 ppm TEA, which is 10.3 times higher than that of the F1 sample. The sensor demonstrated a rapid response time of 1 second and a low detection limit of 0.5 ppm. Comprehensive characterization through XPS, UV-vis, PL, and Raman spectroscopy attributed the superior performance to the tunable electronic structure of ZnFe 2 O 4 –Fe 2 O 3 –ZnO heterojunctions and optimized interfacial reactions, including enhanced surface adsorption sites, interfacial charge transport, and adsorption energy. First-principles calculation performed with VASP further validated the role of electronic structure modulation and heterogeneous interface optimization in improving gas-sensing properties. Additionally, this study elucidated the TEA sensing mechanism and performance variations among heterostructure materials with different compositions. These findings offer a robust strategy for the synthesis of MOF-on-MOF-derived multi-heterojunction nanocomposites and provide a pathway for advancing electronic structure engineering and interfacial optimization in gas-sensing applications.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqVj7FOwzAYhC0EEhV04Qn-EZACTpy2yYharC6QgUxdIiv5Q1wlduTfQcrGO7DwfDwJKapg5pb7pLsbjrGrkN-FXKT3mzh_4CueivUJm0V8wYNVnC5PfzlJztmcaM8nJZwv03TGPl9G4xskTaBMBRuZA_mhGsHW8LyFCIKnTEZicS3xJqjQ6TesYGckTlEGMXy9fxxZHHhnMuiG1uu-RWjQo7P7wZReWwNGGVvarrekPRLU1oF3Gn0ztqrTBuFVEVTT5qd-yc5q1RLOj37BbuVjvt4GpbNEDuuid7pTbixCXhzuF3_3xb_K3zQWYJA</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Zhu, Hang</creator><creator>Li, Panpan</creator><creator>Li, Chengfeng</creator><creator>Zhao, Xuanwei</creator><creator>Lu, Fanghao</creator><creator>Sun, Haoyang</creator><creator>Yang, Tianye</creator><creator>Lan, Yubin</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0617-5202</orcidid></search><sort><creationdate>2025</creationdate><title>Synthesis and DFT study of NH 2 -MOF235(Fe)-derived ZnFe 2 O 4 –Fe 2 O 3 –ZnO multiple heterojunction nanocomposites for triethylamine gas detection</title><author>Zhu, Hang ; Li, Panpan ; Li, Chengfeng ; Zhao, Xuanwei ; Lu, Fanghao ; Sun, Haoyang ; Yang, Tianye ; Lan, Yubin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1039_D4TA07093C3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Hang</creatorcontrib><creatorcontrib>Li, Panpan</creatorcontrib><creatorcontrib>Li, Chengfeng</creatorcontrib><creatorcontrib>Zhao, Xuanwei</creatorcontrib><creatorcontrib>Lu, Fanghao</creatorcontrib><creatorcontrib>Sun, Haoyang</creatorcontrib><creatorcontrib>Yang, Tianye</creatorcontrib><creatorcontrib>Lan, Yubin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Hang</au><au>Li, Panpan</au><au>Li, Chengfeng</au><au>Zhao, Xuanwei</au><au>Lu, Fanghao</au><au>Sun, Haoyang</au><au>Yang, Tianye</au><au>Lan, Yubin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and DFT study of NH 2 -MOF235(Fe)-derived ZnFe 2 O 4 –Fe 2 O 3 –ZnO multiple heterojunction nanocomposites for triethylamine gas detection</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2025</date><risdate>2025</risdate><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Metal oxide semiconductor (MOS)-based gas sensing materials are highly suitable for gas sensor development due to their exceptional physicochemical properties. Enhancing performance through metal–organic framework (MOF) derivatization and heterojunction construction has emerged as a promising strategy. In this study, NH 2 -MOF235(Fe) was first synthesized as a precursor for the growth of MOF-5 on a MOF framework, leading to the successful fabrication of ZnFe 2 O 4 –Fe 2 O 3 –ZnO multi-heterostructure nanocomposites derived from NH 2 -MOF235(Fe)@MOF5 MOF-on-MOF via a precisely controlled stepwise solvothermal method. Gas-sensitivity evaluations revealed that the ZZF4 sensor exhibited outstanding TEA sensing performance, achieving a response value of 44.9 to 50 ppm TEA, which is 10.3 times higher than that of the F1 sample. The sensor demonstrated a rapid response time of 1 second and a low detection limit of 0.5 ppm. Comprehensive characterization through XPS, UV-vis, PL, and Raman spectroscopy attributed the superior performance to the tunable electronic structure of ZnFe 2 O 4 –Fe 2 O 3 –ZnO heterojunctions and optimized interfacial reactions, including enhanced surface adsorption sites, interfacial charge transport, and adsorption energy. First-principles calculation performed with VASP further validated the role of electronic structure modulation and heterogeneous interface optimization in improving gas-sensing properties. Additionally, this study elucidated the TEA sensing mechanism and performance variations among heterostructure materials with different compositions. These findings offer a robust strategy for the synthesis of MOF-on-MOF-derived multi-heterojunction nanocomposites and provide a pathway for advancing electronic structure engineering and interfacial optimization in gas-sensing applications.</abstract><doi>10.1039/D4TA07093C</doi><orcidid>https://orcid.org/0000-0002-0617-5202</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2025
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D4TA07093C
source Royal Society Of Chemistry Journals 2008-
title Synthesis and DFT study of NH 2 -MOF235(Fe)-derived ZnFe 2 O 4 –Fe 2 O 3 –ZnO multiple heterojunction nanocomposites for triethylamine gas detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20DFT%20study%20of%20NH%202%20-MOF235(Fe)-derived%20ZnFe%202%20O%204%20%E2%80%93Fe%202%20O%203%20%E2%80%93ZnO%20multiple%20heterojunction%20nanocomposites%20for%20triethylamine%20gas%20detection&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zhu,%20Hang&rft.date=2025&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D4TA07093C&rft_dat=%3Ccrossref%3E10_1039_D4TA07093C%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true