Synergistic dual-interface engineering with self-organizing Li-ion/electric fields for enhanced lithium metal anode stability

Lithium metal is promising anode material for next-generation ultra-high energy batteries due to its unparalleled theoretical capacity. Nonetheless, its practical application is largely hindered by interfacial instability. Herein, we propose an interfacial engineering strategy employing a sandwich-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-10, Vol.12 (39), p.26636-26644
Hauptverfasser: Li, Zhiqiang, Liao, Kemeng, Yin, Lihong, Li, Zongrun, Li, Yingzhi, Wang, Hongzhi, Qin, Ning, Gu, Shuai, Chen, Jingjing, Wan, Weihua, Lu, Zhouguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26644
container_issue 39
container_start_page 26636
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Li, Zhiqiang
Liao, Kemeng
Yin, Lihong
Li, Zongrun
Li, Yingzhi
Wang, Hongzhi
Qin, Ning
Gu, Shuai
Chen, Jingjing
Wan, Weihua
Lu, Zhouguang
description Lithium metal is promising anode material for next-generation ultra-high energy batteries due to its unparalleled theoretical capacity. Nonetheless, its practical application is largely hindered by interfacial instability. Herein, we propose an interfacial engineering strategy employing a sandwich-structured interface comprising a nano-silver (Ag) inner layer and a lithium chitosan sulfonate (LCS) outer layer. The lithophilic nano-silver layer, with its uniformly distributed three-dimensional structure, ensures a consistent interfacial electric field and robustly anchors the LCS, mitigating delamination or decoupling from the Li metal surface during Li plating/stripping. Simultaneously, the LCS coating, characterized by its polysaccharide glycosidic structure, not only delivers exceptional elasticity and mechanical strength but also serves as a robust artificial solid-electrolyte interphase (SEI) layer, preserving the interface's structural integrity. Additionally, the LCS's sulfonic acid groups (-SO 3 Li) further promote uniform Li-ion flux and maintain high Li + ionic conductivity. These synergistic effects significantly improve the specific discharge capacity and cycling stability of a C-AgLi|LiCoO 2 full cell, achieving a capacity retention of 83.8% after 350 cycles. These findings elucidate a pathway towards the practical utilization of Li metal anodes by enhancing Li-ion flux, electric field uniformity, and interface adhesion, thus effectively inhibiting Li dendrites. A self-organizing, dual-modified interface for lithium metal anodes that significantly improves uniform lithium deposition and enhances electroplating/stripping performance.
doi_str_mv 10.1039/d4ta03128h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4TA03128H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114101860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-9faa90fb021e4b3014abfa6160bddd5c24fd8ab991eee29874ba39523e8720b73</originalsourceid><addsrcrecordid>eNpFkU1LAzEQhhdRsNRevAsBb8LaySbd3RxL_ahQ8GA9L9nNZJuyzdYkRSr4302t1LnMMPO8M_BOklxTuKfAxFjxIIHRrFydJYMMJpAWXOTnp7osL5OR92uIUQLkQgyS77e9RdcaH0xD1E52qbEBnZYNErStsYjO2JZ8mrAiHjud9q6V1nwdmguTmt6OscMmuKjXBjvlie5d1K6kbVCRLgrNbkM2GGRHpO0VEh9kbeJgf5VcaNl5HP3lYfL-9LiczdPF6_PLbLpIG1pASIWWUoCuIaPIawaUy1rLnOZQK6UmTca1KmUtBEXETJQFryUTk4xhWWRQF2yY3B73bl3_sUMfqnW_czaerBilnAItc4jU3ZFqXO-9Q11tndlIt68oVAeHqwe-nP46PI_wzRF2vjlx_x9gP0sreoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114101860</pqid></control><display><type>article</type><title>Synergistic dual-interface engineering with self-organizing Li-ion/electric fields for enhanced lithium metal anode stability</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Zhiqiang ; Liao, Kemeng ; Yin, Lihong ; Li, Zongrun ; Li, Yingzhi ; Wang, Hongzhi ; Qin, Ning ; Gu, Shuai ; Chen, Jingjing ; Wan, Weihua ; Lu, Zhouguang</creator><creatorcontrib>Li, Zhiqiang ; Liao, Kemeng ; Yin, Lihong ; Li, Zongrun ; Li, Yingzhi ; Wang, Hongzhi ; Qin, Ning ; Gu, Shuai ; Chen, Jingjing ; Wan, Weihua ; Lu, Zhouguang</creatorcontrib><description>Lithium metal is promising anode material for next-generation ultra-high energy batteries due to its unparalleled theoretical capacity. Nonetheless, its practical application is largely hindered by interfacial instability. Herein, we propose an interfacial engineering strategy employing a sandwich-structured interface comprising a nano-silver (Ag) inner layer and a lithium chitosan sulfonate (LCS) outer layer. The lithophilic nano-silver layer, with its uniformly distributed three-dimensional structure, ensures a consistent interfacial electric field and robustly anchors the LCS, mitigating delamination or decoupling from the Li metal surface during Li plating/stripping. Simultaneously, the LCS coating, characterized by its polysaccharide glycosidic structure, not only delivers exceptional elasticity and mechanical strength but also serves as a robust artificial solid-electrolyte interphase (SEI) layer, preserving the interface's structural integrity. Additionally, the LCS's sulfonic acid groups (-SO 3 Li) further promote uniform Li-ion flux and maintain high Li + ionic conductivity. These synergistic effects significantly improve the specific discharge capacity and cycling stability of a C-AgLi|LiCoO 2 full cell, achieving a capacity retention of 83.8% after 350 cycles. These findings elucidate a pathway towards the practical utilization of Li metal anodes by enhancing Li-ion flux, electric field uniformity, and interface adhesion, thus effectively inhibiting Li dendrites. A self-organizing, dual-modified interface for lithium metal anodes that significantly improves uniform lithium deposition and enhances electroplating/stripping performance.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta03128h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Chitosan ; Decoupling ; Electric fields ; Electrode materials ; Interface stability ; Ion currents ; Ion flux ; Lithium ; Lithium ions ; Mechanical properties ; Metal surfaces ; Metals ; Polysaccharides ; Silver ; Structural integrity ; Sulfonic acid ; Synergistic effect</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-10, Vol.12 (39), p.26636-26644</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-9faa90fb021e4b3014abfa6160bddd5c24fd8ab991eee29874ba39523e8720b73</cites><orcidid>0000-0003-3769-9356 ; 0000-0001-5322-6976 ; 0000-0002-3283-6385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Liao, Kemeng</creatorcontrib><creatorcontrib>Yin, Lihong</creatorcontrib><creatorcontrib>Li, Zongrun</creatorcontrib><creatorcontrib>Li, Yingzhi</creatorcontrib><creatorcontrib>Wang, Hongzhi</creatorcontrib><creatorcontrib>Qin, Ning</creatorcontrib><creatorcontrib>Gu, Shuai</creatorcontrib><creatorcontrib>Chen, Jingjing</creatorcontrib><creatorcontrib>Wan, Weihua</creatorcontrib><creatorcontrib>Lu, Zhouguang</creatorcontrib><title>Synergistic dual-interface engineering with self-organizing Li-ion/electric fields for enhanced lithium metal anode stability</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Lithium metal is promising anode material for next-generation ultra-high energy batteries due to its unparalleled theoretical capacity. Nonetheless, its practical application is largely hindered by interfacial instability. Herein, we propose an interfacial engineering strategy employing a sandwich-structured interface comprising a nano-silver (Ag) inner layer and a lithium chitosan sulfonate (LCS) outer layer. The lithophilic nano-silver layer, with its uniformly distributed three-dimensional structure, ensures a consistent interfacial electric field and robustly anchors the LCS, mitigating delamination or decoupling from the Li metal surface during Li plating/stripping. Simultaneously, the LCS coating, characterized by its polysaccharide glycosidic structure, not only delivers exceptional elasticity and mechanical strength but also serves as a robust artificial solid-electrolyte interphase (SEI) layer, preserving the interface's structural integrity. Additionally, the LCS's sulfonic acid groups (-SO 3 Li) further promote uniform Li-ion flux and maintain high Li + ionic conductivity. These synergistic effects significantly improve the specific discharge capacity and cycling stability of a C-AgLi|LiCoO 2 full cell, achieving a capacity retention of 83.8% after 350 cycles. These findings elucidate a pathway towards the practical utilization of Li metal anodes by enhancing Li-ion flux, electric field uniformity, and interface adhesion, thus effectively inhibiting Li dendrites. A self-organizing, dual-modified interface for lithium metal anodes that significantly improves uniform lithium deposition and enhances electroplating/stripping performance.</description><subject>Anodes</subject><subject>Chitosan</subject><subject>Decoupling</subject><subject>Electric fields</subject><subject>Electrode materials</subject><subject>Interface stability</subject><subject>Ion currents</subject><subject>Ion flux</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Mechanical properties</subject><subject>Metal surfaces</subject><subject>Metals</subject><subject>Polysaccharides</subject><subject>Silver</subject><subject>Structural integrity</subject><subject>Sulfonic acid</subject><subject>Synergistic effect</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkU1LAzEQhhdRsNRevAsBb8LaySbd3RxL_ahQ8GA9L9nNZJuyzdYkRSr4302t1LnMMPO8M_BOklxTuKfAxFjxIIHRrFydJYMMJpAWXOTnp7osL5OR92uIUQLkQgyS77e9RdcaH0xD1E52qbEBnZYNErStsYjO2JZ8mrAiHjud9q6V1nwdmguTmt6OscMmuKjXBjvlie5d1K6kbVCRLgrNbkM2GGRHpO0VEh9kbeJgf5VcaNl5HP3lYfL-9LiczdPF6_PLbLpIG1pASIWWUoCuIaPIawaUy1rLnOZQK6UmTca1KmUtBEXETJQFryUTk4xhWWRQF2yY3B73bl3_sUMfqnW_czaerBilnAItc4jU3ZFqXO-9Q11tndlIt68oVAeHqwe-nP46PI_wzRF2vjlx_x9gP0sreoU</recordid><startdate>20241008</startdate><enddate>20241008</enddate><creator>Li, Zhiqiang</creator><creator>Liao, Kemeng</creator><creator>Yin, Lihong</creator><creator>Li, Zongrun</creator><creator>Li, Yingzhi</creator><creator>Wang, Hongzhi</creator><creator>Qin, Ning</creator><creator>Gu, Shuai</creator><creator>Chen, Jingjing</creator><creator>Wan, Weihua</creator><creator>Lu, Zhouguang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3769-9356</orcidid><orcidid>https://orcid.org/0000-0001-5322-6976</orcidid><orcidid>https://orcid.org/0000-0002-3283-6385</orcidid></search><sort><creationdate>20241008</creationdate><title>Synergistic dual-interface engineering with self-organizing Li-ion/electric fields for enhanced lithium metal anode stability</title><author>Li, Zhiqiang ; Liao, Kemeng ; Yin, Lihong ; Li, Zongrun ; Li, Yingzhi ; Wang, Hongzhi ; Qin, Ning ; Gu, Shuai ; Chen, Jingjing ; Wan, Weihua ; Lu, Zhouguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-9faa90fb021e4b3014abfa6160bddd5c24fd8ab991eee29874ba39523e8720b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>Chitosan</topic><topic>Decoupling</topic><topic>Electric fields</topic><topic>Electrode materials</topic><topic>Interface stability</topic><topic>Ion currents</topic><topic>Ion flux</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Mechanical properties</topic><topic>Metal surfaces</topic><topic>Metals</topic><topic>Polysaccharides</topic><topic>Silver</topic><topic>Structural integrity</topic><topic>Sulfonic acid</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Liao, Kemeng</creatorcontrib><creatorcontrib>Yin, Lihong</creatorcontrib><creatorcontrib>Li, Zongrun</creatorcontrib><creatorcontrib>Li, Yingzhi</creatorcontrib><creatorcontrib>Wang, Hongzhi</creatorcontrib><creatorcontrib>Qin, Ning</creatorcontrib><creatorcontrib>Gu, Shuai</creatorcontrib><creatorcontrib>Chen, Jingjing</creatorcontrib><creatorcontrib>Wan, Weihua</creatorcontrib><creatorcontrib>Lu, Zhouguang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhiqiang</au><au>Liao, Kemeng</au><au>Yin, Lihong</au><au>Li, Zongrun</au><au>Li, Yingzhi</au><au>Wang, Hongzhi</au><au>Qin, Ning</au><au>Gu, Shuai</au><au>Chen, Jingjing</au><au>Wan, Weihua</au><au>Lu, Zhouguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic dual-interface engineering with self-organizing Li-ion/electric fields for enhanced lithium metal anode stability</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-10-08</date><risdate>2024</risdate><volume>12</volume><issue>39</issue><spage>26636</spage><epage>26644</epage><pages>26636-26644</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Lithium metal is promising anode material for next-generation ultra-high energy batteries due to its unparalleled theoretical capacity. Nonetheless, its practical application is largely hindered by interfacial instability. Herein, we propose an interfacial engineering strategy employing a sandwich-structured interface comprising a nano-silver (Ag) inner layer and a lithium chitosan sulfonate (LCS) outer layer. The lithophilic nano-silver layer, with its uniformly distributed three-dimensional structure, ensures a consistent interfacial electric field and robustly anchors the LCS, mitigating delamination or decoupling from the Li metal surface during Li plating/stripping. Simultaneously, the LCS coating, characterized by its polysaccharide glycosidic structure, not only delivers exceptional elasticity and mechanical strength but also serves as a robust artificial solid-electrolyte interphase (SEI) layer, preserving the interface's structural integrity. Additionally, the LCS's sulfonic acid groups (-SO 3 Li) further promote uniform Li-ion flux and maintain high Li + ionic conductivity. These synergistic effects significantly improve the specific discharge capacity and cycling stability of a C-AgLi|LiCoO 2 full cell, achieving a capacity retention of 83.8% after 350 cycles. These findings elucidate a pathway towards the practical utilization of Li metal anodes by enhancing Li-ion flux, electric field uniformity, and interface adhesion, thus effectively inhibiting Li dendrites. A self-organizing, dual-modified interface for lithium metal anodes that significantly improves uniform lithium deposition and enhances electroplating/stripping performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta03128h</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3769-9356</orcidid><orcidid>https://orcid.org/0000-0001-5322-6976</orcidid><orcidid>https://orcid.org/0000-0002-3283-6385</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-10, Vol.12 (39), p.26636-26644
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D4TA03128H
source Royal Society Of Chemistry Journals 2008-
subjects Anodes
Chitosan
Decoupling
Electric fields
Electrode materials
Interface stability
Ion currents
Ion flux
Lithium
Lithium ions
Mechanical properties
Metal surfaces
Metals
Polysaccharides
Silver
Structural integrity
Sulfonic acid
Synergistic effect
title Synergistic dual-interface engineering with self-organizing Li-ion/electric fields for enhanced lithium metal anode stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20dual-interface%20engineering%20with%20self-organizing%20Li-ion/electric%20fields%20for%20enhanced%20lithium%20metal%20anode%20stability&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Li,%20Zhiqiang&rft.date=2024-10-08&rft.volume=12&rft.issue=39&rft.spage=26636&rft.epage=26644&rft.pages=26636-26644&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta03128h&rft_dat=%3Cproquest_cross%3E3114101860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114101860&rft_id=info:pmid/&rfr_iscdi=true