Synergistic dual-interface engineering with self-organizing Li-ion/electric fields for enhanced lithium metal anode stability
Lithium metal is promising anode material for next-generation ultra-high energy batteries due to its unparalleled theoretical capacity. Nonetheless, its practical application is largely hindered by interfacial instability. Herein, we propose an interfacial engineering strategy employing a sandwich-s...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-10, Vol.12 (39), p.26636-26644 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26644 |
---|---|
container_issue | 39 |
container_start_page | 26636 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 12 |
creator | Li, Zhiqiang Liao, Kemeng Yin, Lihong Li, Zongrun Li, Yingzhi Wang, Hongzhi Qin, Ning Gu, Shuai Chen, Jingjing Wan, Weihua Lu, Zhouguang |
description | Lithium metal is promising anode material for next-generation ultra-high energy batteries due to its unparalleled theoretical capacity. Nonetheless, its practical application is largely hindered by interfacial instability. Herein, we propose an interfacial engineering strategy employing a sandwich-structured interface comprising a nano-silver (Ag) inner layer and a lithium chitosan sulfonate (LCS) outer layer. The lithophilic nano-silver layer, with its uniformly distributed three-dimensional structure, ensures a consistent interfacial electric field and robustly anchors the LCS, mitigating delamination or decoupling from the Li metal surface during Li plating/stripping. Simultaneously, the LCS coating, characterized by its polysaccharide glycosidic structure, not only delivers exceptional elasticity and mechanical strength but also serves as a robust artificial solid-electrolyte interphase (SEI) layer, preserving the interface's structural integrity. Additionally, the LCS's sulfonic acid groups (-SO
3
Li) further promote uniform Li-ion flux and maintain high Li
+
ionic conductivity. These synergistic effects significantly improve the specific discharge capacity and cycling stability of a C-AgLi|LiCoO
2
full cell, achieving a capacity retention of 83.8% after 350 cycles. These findings elucidate a pathway towards the practical utilization of Li metal anodes by enhancing Li-ion flux, electric field uniformity, and interface adhesion, thus effectively inhibiting Li dendrites.
A self-organizing, dual-modified interface for lithium metal anodes that significantly improves uniform lithium deposition and enhances electroplating/stripping performance. |
doi_str_mv | 10.1039/d4ta03128h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4TA03128H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114101860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-9faa90fb021e4b3014abfa6160bddd5c24fd8ab991eee29874ba39523e8720b73</originalsourceid><addsrcrecordid>eNpFkU1LAzEQhhdRsNRevAsBb8LaySbd3RxL_ahQ8GA9L9nNZJuyzdYkRSr4302t1LnMMPO8M_BOklxTuKfAxFjxIIHRrFydJYMMJpAWXOTnp7osL5OR92uIUQLkQgyS77e9RdcaH0xD1E52qbEBnZYNErStsYjO2JZ8mrAiHjud9q6V1nwdmguTmt6OscMmuKjXBjvlie5d1K6kbVCRLgrNbkM2GGRHpO0VEh9kbeJgf5VcaNl5HP3lYfL-9LiczdPF6_PLbLpIG1pASIWWUoCuIaPIawaUy1rLnOZQK6UmTca1KmUtBEXETJQFryUTk4xhWWRQF2yY3B73bl3_sUMfqnW_czaerBilnAItc4jU3ZFqXO-9Q11tndlIt68oVAeHqwe-nP46PI_wzRF2vjlx_x9gP0sreoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114101860</pqid></control><display><type>article</type><title>Synergistic dual-interface engineering with self-organizing Li-ion/electric fields for enhanced lithium metal anode stability</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Zhiqiang ; Liao, Kemeng ; Yin, Lihong ; Li, Zongrun ; Li, Yingzhi ; Wang, Hongzhi ; Qin, Ning ; Gu, Shuai ; Chen, Jingjing ; Wan, Weihua ; Lu, Zhouguang</creator><creatorcontrib>Li, Zhiqiang ; Liao, Kemeng ; Yin, Lihong ; Li, Zongrun ; Li, Yingzhi ; Wang, Hongzhi ; Qin, Ning ; Gu, Shuai ; Chen, Jingjing ; Wan, Weihua ; Lu, Zhouguang</creatorcontrib><description>Lithium metal is promising anode material for next-generation ultra-high energy batteries due to its unparalleled theoretical capacity. Nonetheless, its practical application is largely hindered by interfacial instability. Herein, we propose an interfacial engineering strategy employing a sandwich-structured interface comprising a nano-silver (Ag) inner layer and a lithium chitosan sulfonate (LCS) outer layer. The lithophilic nano-silver layer, with its uniformly distributed three-dimensional structure, ensures a consistent interfacial electric field and robustly anchors the LCS, mitigating delamination or decoupling from the Li metal surface during Li plating/stripping. Simultaneously, the LCS coating, characterized by its polysaccharide glycosidic structure, not only delivers exceptional elasticity and mechanical strength but also serves as a robust artificial solid-electrolyte interphase (SEI) layer, preserving the interface's structural integrity. Additionally, the LCS's sulfonic acid groups (-SO
3
Li) further promote uniform Li-ion flux and maintain high Li
+
ionic conductivity. These synergistic effects significantly improve the specific discharge capacity and cycling stability of a C-AgLi|LiCoO
2
full cell, achieving a capacity retention of 83.8% after 350 cycles. These findings elucidate a pathway towards the practical utilization of Li metal anodes by enhancing Li-ion flux, electric field uniformity, and interface adhesion, thus effectively inhibiting Li dendrites.
A self-organizing, dual-modified interface for lithium metal anodes that significantly improves uniform lithium deposition and enhances electroplating/stripping performance.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta03128h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Chitosan ; Decoupling ; Electric fields ; Electrode materials ; Interface stability ; Ion currents ; Ion flux ; Lithium ; Lithium ions ; Mechanical properties ; Metal surfaces ; Metals ; Polysaccharides ; Silver ; Structural integrity ; Sulfonic acid ; Synergistic effect</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-10, Vol.12 (39), p.26636-26644</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-9faa90fb021e4b3014abfa6160bddd5c24fd8ab991eee29874ba39523e8720b73</cites><orcidid>0000-0003-3769-9356 ; 0000-0001-5322-6976 ; 0000-0002-3283-6385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Liao, Kemeng</creatorcontrib><creatorcontrib>Yin, Lihong</creatorcontrib><creatorcontrib>Li, Zongrun</creatorcontrib><creatorcontrib>Li, Yingzhi</creatorcontrib><creatorcontrib>Wang, Hongzhi</creatorcontrib><creatorcontrib>Qin, Ning</creatorcontrib><creatorcontrib>Gu, Shuai</creatorcontrib><creatorcontrib>Chen, Jingjing</creatorcontrib><creatorcontrib>Wan, Weihua</creatorcontrib><creatorcontrib>Lu, Zhouguang</creatorcontrib><title>Synergistic dual-interface engineering with self-organizing Li-ion/electric fields for enhanced lithium metal anode stability</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Lithium metal is promising anode material for next-generation ultra-high energy batteries due to its unparalleled theoretical capacity. Nonetheless, its practical application is largely hindered by interfacial instability. Herein, we propose an interfacial engineering strategy employing a sandwich-structured interface comprising a nano-silver (Ag) inner layer and a lithium chitosan sulfonate (LCS) outer layer. The lithophilic nano-silver layer, with its uniformly distributed three-dimensional structure, ensures a consistent interfacial electric field and robustly anchors the LCS, mitigating delamination or decoupling from the Li metal surface during Li plating/stripping. Simultaneously, the LCS coating, characterized by its polysaccharide glycosidic structure, not only delivers exceptional elasticity and mechanical strength but also serves as a robust artificial solid-electrolyte interphase (SEI) layer, preserving the interface's structural integrity. Additionally, the LCS's sulfonic acid groups (-SO
3
Li) further promote uniform Li-ion flux and maintain high Li
+
ionic conductivity. These synergistic effects significantly improve the specific discharge capacity and cycling stability of a C-AgLi|LiCoO
2
full cell, achieving a capacity retention of 83.8% after 350 cycles. These findings elucidate a pathway towards the practical utilization of Li metal anodes by enhancing Li-ion flux, electric field uniformity, and interface adhesion, thus effectively inhibiting Li dendrites.
A self-organizing, dual-modified interface for lithium metal anodes that significantly improves uniform lithium deposition and enhances electroplating/stripping performance.</description><subject>Anodes</subject><subject>Chitosan</subject><subject>Decoupling</subject><subject>Electric fields</subject><subject>Electrode materials</subject><subject>Interface stability</subject><subject>Ion currents</subject><subject>Ion flux</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Mechanical properties</subject><subject>Metal surfaces</subject><subject>Metals</subject><subject>Polysaccharides</subject><subject>Silver</subject><subject>Structural integrity</subject><subject>Sulfonic acid</subject><subject>Synergistic effect</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkU1LAzEQhhdRsNRevAsBb8LaySbd3RxL_ahQ8GA9L9nNZJuyzdYkRSr4302t1LnMMPO8M_BOklxTuKfAxFjxIIHRrFydJYMMJpAWXOTnp7osL5OR92uIUQLkQgyS77e9RdcaH0xD1E52qbEBnZYNErStsYjO2JZ8mrAiHjud9q6V1nwdmguTmt6OscMmuKjXBjvlie5d1K6kbVCRLgrNbkM2GGRHpO0VEh9kbeJgf5VcaNl5HP3lYfL-9LiczdPF6_PLbLpIG1pASIWWUoCuIaPIawaUy1rLnOZQK6UmTca1KmUtBEXETJQFryUTk4xhWWRQF2yY3B73bl3_sUMfqnW_czaerBilnAItc4jU3ZFqXO-9Q11tndlIt68oVAeHqwe-nP46PI_wzRF2vjlx_x9gP0sreoU</recordid><startdate>20241008</startdate><enddate>20241008</enddate><creator>Li, Zhiqiang</creator><creator>Liao, Kemeng</creator><creator>Yin, Lihong</creator><creator>Li, Zongrun</creator><creator>Li, Yingzhi</creator><creator>Wang, Hongzhi</creator><creator>Qin, Ning</creator><creator>Gu, Shuai</creator><creator>Chen, Jingjing</creator><creator>Wan, Weihua</creator><creator>Lu, Zhouguang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3769-9356</orcidid><orcidid>https://orcid.org/0000-0001-5322-6976</orcidid><orcidid>https://orcid.org/0000-0002-3283-6385</orcidid></search><sort><creationdate>20241008</creationdate><title>Synergistic dual-interface engineering with self-organizing Li-ion/electric fields for enhanced lithium metal anode stability</title><author>Li, Zhiqiang ; Liao, Kemeng ; Yin, Lihong ; Li, Zongrun ; Li, Yingzhi ; Wang, Hongzhi ; Qin, Ning ; Gu, Shuai ; Chen, Jingjing ; Wan, Weihua ; Lu, Zhouguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-9faa90fb021e4b3014abfa6160bddd5c24fd8ab991eee29874ba39523e8720b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>Chitosan</topic><topic>Decoupling</topic><topic>Electric fields</topic><topic>Electrode materials</topic><topic>Interface stability</topic><topic>Ion currents</topic><topic>Ion flux</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Mechanical properties</topic><topic>Metal surfaces</topic><topic>Metals</topic><topic>Polysaccharides</topic><topic>Silver</topic><topic>Structural integrity</topic><topic>Sulfonic acid</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Liao, Kemeng</creatorcontrib><creatorcontrib>Yin, Lihong</creatorcontrib><creatorcontrib>Li, Zongrun</creatorcontrib><creatorcontrib>Li, Yingzhi</creatorcontrib><creatorcontrib>Wang, Hongzhi</creatorcontrib><creatorcontrib>Qin, Ning</creatorcontrib><creatorcontrib>Gu, Shuai</creatorcontrib><creatorcontrib>Chen, Jingjing</creatorcontrib><creatorcontrib>Wan, Weihua</creatorcontrib><creatorcontrib>Lu, Zhouguang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhiqiang</au><au>Liao, Kemeng</au><au>Yin, Lihong</au><au>Li, Zongrun</au><au>Li, Yingzhi</au><au>Wang, Hongzhi</au><au>Qin, Ning</au><au>Gu, Shuai</au><au>Chen, Jingjing</au><au>Wan, Weihua</au><au>Lu, Zhouguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic dual-interface engineering with self-organizing Li-ion/electric fields for enhanced lithium metal anode stability</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-10-08</date><risdate>2024</risdate><volume>12</volume><issue>39</issue><spage>26636</spage><epage>26644</epage><pages>26636-26644</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Lithium metal is promising anode material for next-generation ultra-high energy batteries due to its unparalleled theoretical capacity. Nonetheless, its practical application is largely hindered by interfacial instability. Herein, we propose an interfacial engineering strategy employing a sandwich-structured interface comprising a nano-silver (Ag) inner layer and a lithium chitosan sulfonate (LCS) outer layer. The lithophilic nano-silver layer, with its uniformly distributed three-dimensional structure, ensures a consistent interfacial electric field and robustly anchors the LCS, mitigating delamination or decoupling from the Li metal surface during Li plating/stripping. Simultaneously, the LCS coating, characterized by its polysaccharide glycosidic structure, not only delivers exceptional elasticity and mechanical strength but also serves as a robust artificial solid-electrolyte interphase (SEI) layer, preserving the interface's structural integrity. Additionally, the LCS's sulfonic acid groups (-SO
3
Li) further promote uniform Li-ion flux and maintain high Li
+
ionic conductivity. These synergistic effects significantly improve the specific discharge capacity and cycling stability of a C-AgLi|LiCoO
2
full cell, achieving a capacity retention of 83.8% after 350 cycles. These findings elucidate a pathway towards the practical utilization of Li metal anodes by enhancing Li-ion flux, electric field uniformity, and interface adhesion, thus effectively inhibiting Li dendrites.
A self-organizing, dual-modified interface for lithium metal anodes that significantly improves uniform lithium deposition and enhances electroplating/stripping performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta03128h</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3769-9356</orcidid><orcidid>https://orcid.org/0000-0001-5322-6976</orcidid><orcidid>https://orcid.org/0000-0002-3283-6385</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2024-10, Vol.12 (39), p.26636-26644 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D4TA03128H |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Anodes Chitosan Decoupling Electric fields Electrode materials Interface stability Ion currents Ion flux Lithium Lithium ions Mechanical properties Metal surfaces Metals Polysaccharides Silver Structural integrity Sulfonic acid Synergistic effect |
title | Synergistic dual-interface engineering with self-organizing Li-ion/electric fields for enhanced lithium metal anode stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20dual-interface%20engineering%20with%20self-organizing%20Li-ion/electric%20fields%20for%20enhanced%20lithium%20metal%20anode%20stability&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Li,%20Zhiqiang&rft.date=2024-10-08&rft.volume=12&rft.issue=39&rft.spage=26636&rft.epage=26644&rft.pages=26636-26644&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta03128h&rft_dat=%3Cproquest_cross%3E3114101860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114101860&rft_id=info:pmid/&rfr_iscdi=true |