Shaping the future of methanol production through carbon dioxide utilisation strategies

Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050. Recent EU's Renewable Energy Directive (RED) emphasises the urgency of adopting renewable fuels and establishing a framework to promote and certify non-biological renewable fuel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainable energy & fuels 2024-11, Vol.8 (23), p.5492-553
Hauptverfasser: Fernández-González, Javier, Rumayor, Marta, Laso, Jara, Domínguez-Ramos, Antonio, Irabien, Angel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 553
container_issue 23
container_start_page 5492
container_title Sustainable energy & fuels
container_volume 8
creator Fernández-González, Javier
Rumayor, Marta
Laso, Jara
Domínguez-Ramos, Antonio
Irabien, Angel
description Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050. Recent EU's Renewable Energy Directive (RED) emphasises the urgency of adopting renewable fuels and establishing a framework to promote and certify non-biological renewable fuels (RFNBO) and recycled carbon fuels (RCFs). The electrochemical reduction of CO 2 (CO 2 ER) technology emerges as a promising avenue for producing electro-methanol (e-MeOH), which could help defossilise key sectors, including transportation, and strengthen the circular economy. However, its ability to stand up to the established two-step catalytic hydrogenation process remains questioned. We delve into the technical potential of CO 2 ER for e-MeOH production, integrating a process model with a life cycle analysis. Our study identifies crucial advancements needed in product concentration (over 50% wt), faradaic efficiency (over 95%), and cell voltage (below 1.4 V). While the uncertainty assessment indicates that e-MeOH from CO 2 ER could significantly cut carbon emissions and fossil fuel consumption compared to traditional methods, further enhancements in key performance parameters (KPPs) are essential to match the performance of hydrogen-based e-MeOH. Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050.
doi_str_mv 10.1039/d4se01281j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4SE01281J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130586123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-6c1a248d5f2a2c9c15d67e0fa9eb399c71deead0d2a89b3e41612286056ad0743</originalsourceid><addsrcrecordid>eNpN0EtLAzEQB_AgChbtxbsQ8Cas5rWPHKXWFwUPVTwuaTLbTWk3NQ_Qb29sRT1lMvyYGf4InVFyRQmX10YEIJQ1dHWARozLphCSsMN_9TEah7AihDDKBCvrEXqb92prhyWOPeAuxeQBuw5vIPZqcGu89c4kHa0bsvAuLXuslV_kr7HuwxrAKdq1DWpHQvQqwtJCOEVHnVoHGP-8J-j1bvoyeShmz_ePk5tZoWlNYlFpqphoTNkxxbTUtDRVDaRTEhZcSl1TA6AMMUw1csFB0Ioy1lSkrHK3FvwEXezn5kPfE4TYrlzyQ17ZcspJ2WTPs7rcK-1dCB66duvtRvnPlpL2O7v2Vsynu-yeMj7fYx_0r_vLln8BUxlsSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130586123</pqid></control><display><type>article</type><title>Shaping the future of methanol production through carbon dioxide utilisation strategies</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Fernández-González, Javier ; Rumayor, Marta ; Laso, Jara ; Domínguez-Ramos, Antonio ; Irabien, Angel</creator><creatorcontrib>Fernández-González, Javier ; Rumayor, Marta ; Laso, Jara ; Domínguez-Ramos, Antonio ; Irabien, Angel</creatorcontrib><description>Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050. Recent EU's Renewable Energy Directive (RED) emphasises the urgency of adopting renewable fuels and establishing a framework to promote and certify non-biological renewable fuels (RFNBO) and recycled carbon fuels (RCFs). The electrochemical reduction of CO 2 (CO 2 ER) technology emerges as a promising avenue for producing electro-methanol (e-MeOH), which could help defossilise key sectors, including transportation, and strengthen the circular economy. However, its ability to stand up to the established two-step catalytic hydrogenation process remains questioned. We delve into the technical potential of CO 2 ER for e-MeOH production, integrating a process model with a life cycle analysis. Our study identifies crucial advancements needed in product concentration (over 50% wt), faradaic efficiency (over 95%), and cell voltage (below 1.4 V). While the uncertainty assessment indicates that e-MeOH from CO 2 ER could significantly cut carbon emissions and fossil fuel consumption compared to traditional methods, further enhancements in key performance parameters (KPPs) are essential to match the performance of hydrogen-based e-MeOH. Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050.</description><identifier>ISSN: 2398-4902</identifier><identifier>EISSN: 2398-4902</identifier><identifier>DOI: 10.1039/d4se01281j</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Carbon dioxide ; Chemical reduction ; Circular economy ; Decarbonization ; Electrochemistry ; Emissions ; Energy consumption ; Fossil fuels ; Fuel consumption ; Life cycle analysis ; Methanol ; Renewable energy ; Renewable fuels ; Transportation applications</subject><ispartof>Sustainable energy &amp; fuels, 2024-11, Vol.8 (23), p.5492-553</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-6c1a248d5f2a2c9c15d67e0fa9eb399c71deead0d2a89b3e41612286056ad0743</cites><orcidid>0000-0003-4442-6786 ; 0000-0002-7322-4238 ; 0000-0001-9715-6981 ; 0000-0002-2411-4163 ; 0000-0003-1653-8561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Fernández-González, Javier</creatorcontrib><creatorcontrib>Rumayor, Marta</creatorcontrib><creatorcontrib>Laso, Jara</creatorcontrib><creatorcontrib>Domínguez-Ramos, Antonio</creatorcontrib><creatorcontrib>Irabien, Angel</creatorcontrib><title>Shaping the future of methanol production through carbon dioxide utilisation strategies</title><title>Sustainable energy &amp; fuels</title><description>Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050. Recent EU's Renewable Energy Directive (RED) emphasises the urgency of adopting renewable fuels and establishing a framework to promote and certify non-biological renewable fuels (RFNBO) and recycled carbon fuels (RCFs). The electrochemical reduction of CO 2 (CO 2 ER) technology emerges as a promising avenue for producing electro-methanol (e-MeOH), which could help defossilise key sectors, including transportation, and strengthen the circular economy. However, its ability to stand up to the established two-step catalytic hydrogenation process remains questioned. We delve into the technical potential of CO 2 ER for e-MeOH production, integrating a process model with a life cycle analysis. Our study identifies crucial advancements needed in product concentration (over 50% wt), faradaic efficiency (over 95%), and cell voltage (below 1.4 V). While the uncertainty assessment indicates that e-MeOH from CO 2 ER could significantly cut carbon emissions and fossil fuel consumption compared to traditional methods, further enhancements in key performance parameters (KPPs) are essential to match the performance of hydrogen-based e-MeOH. Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050.</description><subject>Carbon dioxide</subject><subject>Chemical reduction</subject><subject>Circular economy</subject><subject>Decarbonization</subject><subject>Electrochemistry</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Fossil fuels</subject><subject>Fuel consumption</subject><subject>Life cycle analysis</subject><subject>Methanol</subject><subject>Renewable energy</subject><subject>Renewable fuels</subject><subject>Transportation applications</subject><issn>2398-4902</issn><issn>2398-4902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpN0EtLAzEQB_AgChbtxbsQ8Cas5rWPHKXWFwUPVTwuaTLbTWk3NQ_Qb29sRT1lMvyYGf4InVFyRQmX10YEIJQ1dHWARozLphCSsMN_9TEah7AihDDKBCvrEXqb92prhyWOPeAuxeQBuw5vIPZqcGu89c4kHa0bsvAuLXuslV_kr7HuwxrAKdq1DWpHQvQqwtJCOEVHnVoHGP-8J-j1bvoyeShmz_ePk5tZoWlNYlFpqphoTNkxxbTUtDRVDaRTEhZcSl1TA6AMMUw1csFB0Ioy1lSkrHK3FvwEXezn5kPfE4TYrlzyQ17ZcspJ2WTPs7rcK-1dCB66duvtRvnPlpL2O7v2Vsynu-yeMj7fYx_0r_vLln8BUxlsSQ</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>Fernández-González, Javier</creator><creator>Rumayor, Marta</creator><creator>Laso, Jara</creator><creator>Domínguez-Ramos, Antonio</creator><creator>Irabien, Angel</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-4442-6786</orcidid><orcidid>https://orcid.org/0000-0002-7322-4238</orcidid><orcidid>https://orcid.org/0000-0001-9715-6981</orcidid><orcidid>https://orcid.org/0000-0002-2411-4163</orcidid><orcidid>https://orcid.org/0000-0003-1653-8561</orcidid></search><sort><creationdate>20241120</creationdate><title>Shaping the future of methanol production through carbon dioxide utilisation strategies</title><author>Fernández-González, Javier ; Rumayor, Marta ; Laso, Jara ; Domínguez-Ramos, Antonio ; Irabien, Angel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-6c1a248d5f2a2c9c15d67e0fa9eb399c71deead0d2a89b3e41612286056ad0743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>Chemical reduction</topic><topic>Circular economy</topic><topic>Decarbonization</topic><topic>Electrochemistry</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Fossil fuels</topic><topic>Fuel consumption</topic><topic>Life cycle analysis</topic><topic>Methanol</topic><topic>Renewable energy</topic><topic>Renewable fuels</topic><topic>Transportation applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández-González, Javier</creatorcontrib><creatorcontrib>Rumayor, Marta</creatorcontrib><creatorcontrib>Laso, Jara</creatorcontrib><creatorcontrib>Domínguez-Ramos, Antonio</creatorcontrib><creatorcontrib>Irabien, Angel</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Sustainable energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández-González, Javier</au><au>Rumayor, Marta</au><au>Laso, Jara</au><au>Domínguez-Ramos, Antonio</au><au>Irabien, Angel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shaping the future of methanol production through carbon dioxide utilisation strategies</atitle><jtitle>Sustainable energy &amp; fuels</jtitle><date>2024-11-20</date><risdate>2024</risdate><volume>8</volume><issue>23</issue><spage>5492</spage><epage>553</epage><pages>5492-553</pages><issn>2398-4902</issn><eissn>2398-4902</eissn><abstract>Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050. Recent EU's Renewable Energy Directive (RED) emphasises the urgency of adopting renewable fuels and establishing a framework to promote and certify non-biological renewable fuels (RFNBO) and recycled carbon fuels (RCFs). The electrochemical reduction of CO 2 (CO 2 ER) technology emerges as a promising avenue for producing electro-methanol (e-MeOH), which could help defossilise key sectors, including transportation, and strengthen the circular economy. However, its ability to stand up to the established two-step catalytic hydrogenation process remains questioned. We delve into the technical potential of CO 2 ER for e-MeOH production, integrating a process model with a life cycle analysis. Our study identifies crucial advancements needed in product concentration (over 50% wt), faradaic efficiency (over 95%), and cell voltage (below 1.4 V). While the uncertainty assessment indicates that e-MeOH from CO 2 ER could significantly cut carbon emissions and fossil fuel consumption compared to traditional methods, further enhancements in key performance parameters (KPPs) are essential to match the performance of hydrogen-based e-MeOH. Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4se01281j</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4442-6786</orcidid><orcidid>https://orcid.org/0000-0002-7322-4238</orcidid><orcidid>https://orcid.org/0000-0001-9715-6981</orcidid><orcidid>https://orcid.org/0000-0002-2411-4163</orcidid><orcidid>https://orcid.org/0000-0003-1653-8561</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2398-4902
ispartof Sustainable energy & fuels, 2024-11, Vol.8 (23), p.5492-553
issn 2398-4902
2398-4902
language eng
recordid cdi_crossref_primary_10_1039_D4SE01281J
source Royal Society Of Chemistry Journals 2008-
subjects Carbon dioxide
Chemical reduction
Circular economy
Decarbonization
Electrochemistry
Emissions
Energy consumption
Fossil fuels
Fuel consumption
Life cycle analysis
Methanol
Renewable energy
Renewable fuels
Transportation applications
title Shaping the future of methanol production through carbon dioxide utilisation strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A43%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shaping%20the%20future%20of%20methanol%20production%20through%20carbon%20dioxide%20utilisation%20strategies&rft.jtitle=Sustainable%20energy%20&%20fuels&rft.au=Fern%C3%A1ndez-Gonz%C3%A1lez,%20Javier&rft.date=2024-11-20&rft.volume=8&rft.issue=23&rft.spage=5492&rft.epage=553&rft.pages=5492-553&rft.issn=2398-4902&rft.eissn=2398-4902&rft_id=info:doi/10.1039/d4se01281j&rft_dat=%3Cproquest_cross%3E3130586123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130586123&rft_id=info:pmid/&rfr_iscdi=true