Shaping the future of methanol production through carbon dioxide utilisation strategies
Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050. Recent EU's Renewable Energy Directive (RED) emphasises the urgency of adopting renewable fuels and establishing a framework to promote and certify non-biological renewable fuel...
Gespeichert in:
Veröffentlicht in: | Sustainable energy & fuels 2024-11, Vol.8 (23), p.5492-553 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 553 |
---|---|
container_issue | 23 |
container_start_page | 5492 |
container_title | Sustainable energy & fuels |
container_volume | 8 |
creator | Fernández-González, Javier Rumayor, Marta Laso, Jara Domínguez-Ramos, Antonio Irabien, Angel |
description | Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050. Recent EU's Renewable Energy Directive (RED) emphasises the urgency of adopting renewable fuels and establishing a framework to promote and certify non-biological renewable fuels (RFNBO) and recycled carbon fuels (RCFs). The electrochemical reduction of CO
2
(CO
2
ER) technology emerges as a promising avenue for producing electro-methanol (e-MeOH), which could help defossilise key sectors, including transportation, and strengthen the circular economy. However, its ability to stand up to the established two-step catalytic hydrogenation process remains questioned. We delve into the technical potential of CO
2
ER for e-MeOH production, integrating a process model with a life cycle analysis. Our study identifies crucial advancements needed in product concentration (over 50% wt), faradaic efficiency (over 95%), and cell voltage (below 1.4 V). While the uncertainty assessment indicates that e-MeOH from CO
2
ER could significantly cut carbon emissions and fossil fuel consumption compared to traditional methods, further enhancements in key performance parameters (KPPs) are essential to match the performance of hydrogen-based e-MeOH.
Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050. |
doi_str_mv | 10.1039/d4se01281j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4SE01281J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130586123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-6c1a248d5f2a2c9c15d67e0fa9eb399c71deead0d2a89b3e41612286056ad0743</originalsourceid><addsrcrecordid>eNpN0EtLAzEQB_AgChbtxbsQ8Cas5rWPHKXWFwUPVTwuaTLbTWk3NQ_Qb29sRT1lMvyYGf4InVFyRQmX10YEIJQ1dHWARozLphCSsMN_9TEah7AihDDKBCvrEXqb92prhyWOPeAuxeQBuw5vIPZqcGu89c4kHa0bsvAuLXuslV_kr7HuwxrAKdq1DWpHQvQqwtJCOEVHnVoHGP-8J-j1bvoyeShmz_ePk5tZoWlNYlFpqphoTNkxxbTUtDRVDaRTEhZcSl1TA6AMMUw1csFB0Ioy1lSkrHK3FvwEXezn5kPfE4TYrlzyQ17ZcspJ2WTPs7rcK-1dCB66duvtRvnPlpL2O7v2Vsynu-yeMj7fYx_0r_vLln8BUxlsSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130586123</pqid></control><display><type>article</type><title>Shaping the future of methanol production through carbon dioxide utilisation strategies</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Fernández-González, Javier ; Rumayor, Marta ; Laso, Jara ; Domínguez-Ramos, Antonio ; Irabien, Angel</creator><creatorcontrib>Fernández-González, Javier ; Rumayor, Marta ; Laso, Jara ; Domínguez-Ramos, Antonio ; Irabien, Angel</creatorcontrib><description>Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050. Recent EU's Renewable Energy Directive (RED) emphasises the urgency of adopting renewable fuels and establishing a framework to promote and certify non-biological renewable fuels (RFNBO) and recycled carbon fuels (RCFs). The electrochemical reduction of CO
2
(CO
2
ER) technology emerges as a promising avenue for producing electro-methanol (e-MeOH), which could help defossilise key sectors, including transportation, and strengthen the circular economy. However, its ability to stand up to the established two-step catalytic hydrogenation process remains questioned. We delve into the technical potential of CO
2
ER for e-MeOH production, integrating a process model with a life cycle analysis. Our study identifies crucial advancements needed in product concentration (over 50% wt), faradaic efficiency (over 95%), and cell voltage (below 1.4 V). While the uncertainty assessment indicates that e-MeOH from CO
2
ER could significantly cut carbon emissions and fossil fuel consumption compared to traditional methods, further enhancements in key performance parameters (KPPs) are essential to match the performance of hydrogen-based e-MeOH.
Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050.</description><identifier>ISSN: 2398-4902</identifier><identifier>EISSN: 2398-4902</identifier><identifier>DOI: 10.1039/d4se01281j</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Carbon dioxide ; Chemical reduction ; Circular economy ; Decarbonization ; Electrochemistry ; Emissions ; Energy consumption ; Fossil fuels ; Fuel consumption ; Life cycle analysis ; Methanol ; Renewable energy ; Renewable fuels ; Transportation applications</subject><ispartof>Sustainable energy & fuels, 2024-11, Vol.8 (23), p.5492-553</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-6c1a248d5f2a2c9c15d67e0fa9eb399c71deead0d2a89b3e41612286056ad0743</cites><orcidid>0000-0003-4442-6786 ; 0000-0002-7322-4238 ; 0000-0001-9715-6981 ; 0000-0002-2411-4163 ; 0000-0003-1653-8561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Fernández-González, Javier</creatorcontrib><creatorcontrib>Rumayor, Marta</creatorcontrib><creatorcontrib>Laso, Jara</creatorcontrib><creatorcontrib>Domínguez-Ramos, Antonio</creatorcontrib><creatorcontrib>Irabien, Angel</creatorcontrib><title>Shaping the future of methanol production through carbon dioxide utilisation strategies</title><title>Sustainable energy & fuels</title><description>Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050. Recent EU's Renewable Energy Directive (RED) emphasises the urgency of adopting renewable fuels and establishing a framework to promote and certify non-biological renewable fuels (RFNBO) and recycled carbon fuels (RCFs). The electrochemical reduction of CO
2
(CO
2
ER) technology emerges as a promising avenue for producing electro-methanol (e-MeOH), which could help defossilise key sectors, including transportation, and strengthen the circular economy. However, its ability to stand up to the established two-step catalytic hydrogenation process remains questioned. We delve into the technical potential of CO
2
ER for e-MeOH production, integrating a process model with a life cycle analysis. Our study identifies crucial advancements needed in product concentration (over 50% wt), faradaic efficiency (over 95%), and cell voltage (below 1.4 V). While the uncertainty assessment indicates that e-MeOH from CO
2
ER could significantly cut carbon emissions and fossil fuel consumption compared to traditional methods, further enhancements in key performance parameters (KPPs) are essential to match the performance of hydrogen-based e-MeOH.
Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050.</description><subject>Carbon dioxide</subject><subject>Chemical reduction</subject><subject>Circular economy</subject><subject>Decarbonization</subject><subject>Electrochemistry</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Fossil fuels</subject><subject>Fuel consumption</subject><subject>Life cycle analysis</subject><subject>Methanol</subject><subject>Renewable energy</subject><subject>Renewable fuels</subject><subject>Transportation applications</subject><issn>2398-4902</issn><issn>2398-4902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpN0EtLAzEQB_AgChbtxbsQ8Cas5rWPHKXWFwUPVTwuaTLbTWk3NQ_Qb29sRT1lMvyYGf4InVFyRQmX10YEIJQ1dHWARozLphCSsMN_9TEah7AihDDKBCvrEXqb92prhyWOPeAuxeQBuw5vIPZqcGu89c4kHa0bsvAuLXuslV_kr7HuwxrAKdq1DWpHQvQqwtJCOEVHnVoHGP-8J-j1bvoyeShmz_ePk5tZoWlNYlFpqphoTNkxxbTUtDRVDaRTEhZcSl1TA6AMMUw1csFB0Ioy1lSkrHK3FvwEXezn5kPfE4TYrlzyQ17ZcspJ2WTPs7rcK-1dCB66duvtRvnPlpL2O7v2Vsynu-yeMj7fYx_0r_vLln8BUxlsSQ</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>Fernández-González, Javier</creator><creator>Rumayor, Marta</creator><creator>Laso, Jara</creator><creator>Domínguez-Ramos, Antonio</creator><creator>Irabien, Angel</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-4442-6786</orcidid><orcidid>https://orcid.org/0000-0002-7322-4238</orcidid><orcidid>https://orcid.org/0000-0001-9715-6981</orcidid><orcidid>https://orcid.org/0000-0002-2411-4163</orcidid><orcidid>https://orcid.org/0000-0003-1653-8561</orcidid></search><sort><creationdate>20241120</creationdate><title>Shaping the future of methanol production through carbon dioxide utilisation strategies</title><author>Fernández-González, Javier ; Rumayor, Marta ; Laso, Jara ; Domínguez-Ramos, Antonio ; Irabien, Angel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-6c1a248d5f2a2c9c15d67e0fa9eb399c71deead0d2a89b3e41612286056ad0743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>Chemical reduction</topic><topic>Circular economy</topic><topic>Decarbonization</topic><topic>Electrochemistry</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Fossil fuels</topic><topic>Fuel consumption</topic><topic>Life cycle analysis</topic><topic>Methanol</topic><topic>Renewable energy</topic><topic>Renewable fuels</topic><topic>Transportation applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández-González, Javier</creatorcontrib><creatorcontrib>Rumayor, Marta</creatorcontrib><creatorcontrib>Laso, Jara</creatorcontrib><creatorcontrib>Domínguez-Ramos, Antonio</creatorcontrib><creatorcontrib>Irabien, Angel</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Sustainable energy & fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández-González, Javier</au><au>Rumayor, Marta</au><au>Laso, Jara</au><au>Domínguez-Ramos, Antonio</au><au>Irabien, Angel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shaping the future of methanol production through carbon dioxide utilisation strategies</atitle><jtitle>Sustainable energy & fuels</jtitle><date>2024-11-20</date><risdate>2024</risdate><volume>8</volume><issue>23</issue><spage>5492</spage><epage>553</epage><pages>5492-553</pages><issn>2398-4902</issn><eissn>2398-4902</eissn><abstract>Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050. Recent EU's Renewable Energy Directive (RED) emphasises the urgency of adopting renewable fuels and establishing a framework to promote and certify non-biological renewable fuels (RFNBO) and recycled carbon fuels (RCFs). The electrochemical reduction of CO
2
(CO
2
ER) technology emerges as a promising avenue for producing electro-methanol (e-MeOH), which could help defossilise key sectors, including transportation, and strengthen the circular economy. However, its ability to stand up to the established two-step catalytic hydrogenation process remains questioned. We delve into the technical potential of CO
2
ER for e-MeOH production, integrating a process model with a life cycle analysis. Our study identifies crucial advancements needed in product concentration (over 50% wt), faradaic efficiency (over 95%), and cell voltage (below 1.4 V). While the uncertainty assessment indicates that e-MeOH from CO
2
ER could significantly cut carbon emissions and fossil fuel consumption compared to traditional methods, further enhancements in key performance parameters (KPPs) are essential to match the performance of hydrogen-based e-MeOH.
Decarbonising chemical vectors used for transportation is a top priority for Europe to become carbon-neutral by 2050.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4se01281j</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4442-6786</orcidid><orcidid>https://orcid.org/0000-0002-7322-4238</orcidid><orcidid>https://orcid.org/0000-0001-9715-6981</orcidid><orcidid>https://orcid.org/0000-0002-2411-4163</orcidid><orcidid>https://orcid.org/0000-0003-1653-8561</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2398-4902 |
ispartof | Sustainable energy & fuels, 2024-11, Vol.8 (23), p.5492-553 |
issn | 2398-4902 2398-4902 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D4SE01281J |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Carbon dioxide Chemical reduction Circular economy Decarbonization Electrochemistry Emissions Energy consumption Fossil fuels Fuel consumption Life cycle analysis Methanol Renewable energy Renewable fuels Transportation applications |
title | Shaping the future of methanol production through carbon dioxide utilisation strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A43%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shaping%20the%20future%20of%20methanol%20production%20through%20carbon%20dioxide%20utilisation%20strategies&rft.jtitle=Sustainable%20energy%20&%20fuels&rft.au=Fern%C3%A1ndez-Gonz%C3%A1lez,%20Javier&rft.date=2024-11-20&rft.volume=8&rft.issue=23&rft.spage=5492&rft.epage=553&rft.pages=5492-553&rft.issn=2398-4902&rft.eissn=2398-4902&rft_id=info:doi/10.1039/d4se01281j&rft_dat=%3Cproquest_cross%3E3130586123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130586123&rft_id=info:pmid/&rfr_iscdi=true |