Cross-linking enhances the performance of four-electron carbonylpyridinium based polymers for lithium organic batteries
Design and integration of multiple redox-active organic scaffolds into tailored polymer structures to enhance the specific capacity and cycling life is a long-term research goal. Inspired by nature, we designed and incorporated a 4-electron accepting dicarbonylpyridinium redox motif into linear ( DB...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2024-09, Vol.15 (35), p.14399-1445 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1445 |
---|---|
container_issue | 35 |
container_start_page | 14399 |
container_title | Chemical science (Cambridge) |
container_volume | 15 |
creator | Li, Hongyan Chen, Ling Xing, Fangfang Miao, Hongya Zeng, Jing Zhang, Sen He, Xiaoming |
description | Design and integration of multiple redox-active organic scaffolds into tailored polymer structures to enhance the specific capacity and cycling life is a long-term research goal. Inspired by nature, we designed and incorporated a 4-electron accepting dicarbonylpyridinium redox motif into linear (
DBMP
) and cross-linked polymer (
TBMP
) structures. Benefiting from the suppressed solubility and higher electronic conductivity, the cross-linked
TBMP
based electrode exhibits improved cycling stability and higher specific capacity than the linear counterpart. After 4000 cycles at 1 A g
−1
,
TBMP
can maintain a high capacity of 252 mA h g
−1
, surpassing the performance of many reported organic cathodes. The structural evolution and reaction kinetics during charge and discharge have been investigated in detail. This study demonstrates that cross-linking is an effective strategy to push the bio-derived carbonylpyridinium materials for high performance LOBs.
A four-electron bio-derived carbonylpyridinium redox skeleton is developed and incorporated into two tailored polymer architectures. Cross-linking is an effective strategy to improve the battery performance. |
doi_str_mv | 10.1039/d4sc04179h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4SC04179H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095172528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-4a69ee9ea1b94e9422ec4724547e31191bda96235cabf78cb0a3f95cb1d268623</originalsourceid><addsrcrecordid>eNpdks1v1DAQxS0EolXphXsrS1wqpFB_JV6fULV8FKkSB-BsOc5k4-LYqZ0U7X-Pt1uWgi8e-f30NDPPCL2m5B0lXF12IlsiqFTDM3TMSlU1NVfPDzUjR-g051tSDue0ZvIlOuKKNrXk5Bj9WqeYc-Vd-OnCBkMYTLCQ8TwAniD1MY27Bxx73MclVeDBzikGbE1qY9j6aZtc54JbRtyaDB2eot-OkHLhE_ZuHnZSTBsTnC3IPENykF-hF73xGU4f7xP049PH7-vr6ubr5y_rq5vKcrqaK2EaBaDA0FYJUIIxsEIyUQsJnFJF286ohvHamraXK9sSw3tV25Z2rFkV4QS93_tOSztCZyHMyXg9JTeatNXROP2vEtygN_FeU1q2xbksDhePDineLZBnPbpswXsTIC5Zc6JqKlnNVgV98x96W3YWynyaU8IkEYUt1Ns9ZXerT9AfuqFE7zLVH8S39UOm1wU-f9r_Af2TYAHO9kDK9qD-_RT8Ny__qS0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102704095</pqid></control><display><type>article</type><title>Cross-linking enhances the performance of four-electron carbonylpyridinium based polymers for lithium organic batteries</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Li, Hongyan ; Chen, Ling ; Xing, Fangfang ; Miao, Hongya ; Zeng, Jing ; Zhang, Sen ; He, Xiaoming</creator><creatorcontrib>Li, Hongyan ; Chen, Ling ; Xing, Fangfang ; Miao, Hongya ; Zeng, Jing ; Zhang, Sen ; He, Xiaoming</creatorcontrib><description>Design and integration of multiple redox-active organic scaffolds into tailored polymer structures to enhance the specific capacity and cycling life is a long-term research goal. Inspired by nature, we designed and incorporated a 4-electron accepting dicarbonylpyridinium redox motif into linear (
DBMP
) and cross-linked polymer (
TBMP
) structures. Benefiting from the suppressed solubility and higher electronic conductivity, the cross-linked
TBMP
based electrode exhibits improved cycling stability and higher specific capacity than the linear counterpart. After 4000 cycles at 1 A g
−1
,
TBMP
can maintain a high capacity of 252 mA h g
−1
, surpassing the performance of many reported organic cathodes. The structural evolution and reaction kinetics during charge and discharge have been investigated in detail. This study demonstrates that cross-linking is an effective strategy to push the bio-derived carbonylpyridinium materials for high performance LOBs.
A four-electron bio-derived carbonylpyridinium redox skeleton is developed and incorporated into two tailored polymer architectures. Cross-linking is an effective strategy to improve the battery performance.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d4sc04179h</identifier><identifier>PMID: 39165730</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Carbonyls ; Charge materials ; Chemistry ; Crosslinking ; Cycles ; Lithium ; Performance enhancement ; Polymers ; Reaction kinetics</subject><ispartof>Chemical science (Cambridge), 2024-09, Vol.15 (35), p.14399-1445</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-4a69ee9ea1b94e9422ec4724547e31191bda96235cabf78cb0a3f95cb1d268623</cites><orcidid>0000-0003-2596-7042 ; 0000-0001-5810-2091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331337/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331337/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39165730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Hongyan</creatorcontrib><creatorcontrib>Chen, Ling</creatorcontrib><creatorcontrib>Xing, Fangfang</creatorcontrib><creatorcontrib>Miao, Hongya</creatorcontrib><creatorcontrib>Zeng, Jing</creatorcontrib><creatorcontrib>Zhang, Sen</creatorcontrib><creatorcontrib>He, Xiaoming</creatorcontrib><title>Cross-linking enhances the performance of four-electron carbonylpyridinium based polymers for lithium organic batteries</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Design and integration of multiple redox-active organic scaffolds into tailored polymer structures to enhance the specific capacity and cycling life is a long-term research goal. Inspired by nature, we designed and incorporated a 4-electron accepting dicarbonylpyridinium redox motif into linear (
DBMP
) and cross-linked polymer (
TBMP
) structures. Benefiting from the suppressed solubility and higher electronic conductivity, the cross-linked
TBMP
based electrode exhibits improved cycling stability and higher specific capacity than the linear counterpart. After 4000 cycles at 1 A g
−1
,
TBMP
can maintain a high capacity of 252 mA h g
−1
, surpassing the performance of many reported organic cathodes. The structural evolution and reaction kinetics during charge and discharge have been investigated in detail. This study demonstrates that cross-linking is an effective strategy to push the bio-derived carbonylpyridinium materials for high performance LOBs.
A four-electron bio-derived carbonylpyridinium redox skeleton is developed and incorporated into two tailored polymer architectures. Cross-linking is an effective strategy to improve the battery performance.</description><subject>Carbonyls</subject><subject>Charge materials</subject><subject>Chemistry</subject><subject>Crosslinking</subject><subject>Cycles</subject><subject>Lithium</subject><subject>Performance enhancement</subject><subject>Polymers</subject><subject>Reaction kinetics</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdks1v1DAQxS0EolXphXsrS1wqpFB_JV6fULV8FKkSB-BsOc5k4-LYqZ0U7X-Pt1uWgi8e-f30NDPPCL2m5B0lXF12IlsiqFTDM3TMSlU1NVfPDzUjR-g051tSDue0ZvIlOuKKNrXk5Bj9WqeYc-Vd-OnCBkMYTLCQ8TwAniD1MY27Bxx73MclVeDBzikGbE1qY9j6aZtc54JbRtyaDB2eot-OkHLhE_ZuHnZSTBsTnC3IPENykF-hF73xGU4f7xP049PH7-vr6ubr5y_rq5vKcrqaK2EaBaDA0FYJUIIxsEIyUQsJnFJF286ohvHamraXK9sSw3tV25Z2rFkV4QS93_tOSztCZyHMyXg9JTeatNXROP2vEtygN_FeU1q2xbksDhePDineLZBnPbpswXsTIC5Zc6JqKlnNVgV98x96W3YWynyaU8IkEYUt1Ns9ZXerT9AfuqFE7zLVH8S39UOm1wU-f9r_Af2TYAHO9kDK9qD-_RT8Ny__qS0</recordid><startdate>20240911</startdate><enddate>20240911</enddate><creator>Li, Hongyan</creator><creator>Chen, Ling</creator><creator>Xing, Fangfang</creator><creator>Miao, Hongya</creator><creator>Zeng, Jing</creator><creator>Zhang, Sen</creator><creator>He, Xiaoming</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2596-7042</orcidid><orcidid>https://orcid.org/0000-0001-5810-2091</orcidid></search><sort><creationdate>20240911</creationdate><title>Cross-linking enhances the performance of four-electron carbonylpyridinium based polymers for lithium organic batteries</title><author>Li, Hongyan ; Chen, Ling ; Xing, Fangfang ; Miao, Hongya ; Zeng, Jing ; Zhang, Sen ; He, Xiaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-4a69ee9ea1b94e9422ec4724547e31191bda96235cabf78cb0a3f95cb1d268623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbonyls</topic><topic>Charge materials</topic><topic>Chemistry</topic><topic>Crosslinking</topic><topic>Cycles</topic><topic>Lithium</topic><topic>Performance enhancement</topic><topic>Polymers</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongyan</creatorcontrib><creatorcontrib>Chen, Ling</creatorcontrib><creatorcontrib>Xing, Fangfang</creatorcontrib><creatorcontrib>Miao, Hongya</creatorcontrib><creatorcontrib>Zeng, Jing</creatorcontrib><creatorcontrib>Zhang, Sen</creatorcontrib><creatorcontrib>He, Xiaoming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongyan</au><au>Chen, Ling</au><au>Xing, Fangfang</au><au>Miao, Hongya</au><au>Zeng, Jing</au><au>Zhang, Sen</au><au>He, Xiaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-linking enhances the performance of four-electron carbonylpyridinium based polymers for lithium organic batteries</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2024-09-11</date><risdate>2024</risdate><volume>15</volume><issue>35</issue><spage>14399</spage><epage>1445</epage><pages>14399-1445</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Design and integration of multiple redox-active organic scaffolds into tailored polymer structures to enhance the specific capacity and cycling life is a long-term research goal. Inspired by nature, we designed and incorporated a 4-electron accepting dicarbonylpyridinium redox motif into linear (
DBMP
) and cross-linked polymer (
TBMP
) structures. Benefiting from the suppressed solubility and higher electronic conductivity, the cross-linked
TBMP
based electrode exhibits improved cycling stability and higher specific capacity than the linear counterpart. After 4000 cycles at 1 A g
−1
,
TBMP
can maintain a high capacity of 252 mA h g
−1
, surpassing the performance of many reported organic cathodes. The structural evolution and reaction kinetics during charge and discharge have been investigated in detail. This study demonstrates that cross-linking is an effective strategy to push the bio-derived carbonylpyridinium materials for high performance LOBs.
A four-electron bio-derived carbonylpyridinium redox skeleton is developed and incorporated into two tailored polymer architectures. Cross-linking is an effective strategy to improve the battery performance.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39165730</pmid><doi>10.1039/d4sc04179h</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2596-7042</orcidid><orcidid>https://orcid.org/0000-0001-5810-2091</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2024-09, Vol.15 (35), p.14399-1445 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D4SC04179H |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Carbonyls Charge materials Chemistry Crosslinking Cycles Lithium Performance enhancement Polymers Reaction kinetics |
title | Cross-linking enhances the performance of four-electron carbonylpyridinium based polymers for lithium organic batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T00%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-linking%20enhances%20the%20performance%20of%20four-electron%20carbonylpyridinium%20based%20polymers%20for%20lithium%20organic%20batteries&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Li,%20Hongyan&rft.date=2024-09-11&rft.volume=15&rft.issue=35&rft.spage=14399&rft.epage=1445&rft.pages=14399-1445&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d4sc04179h&rft_dat=%3Cproquest_cross%3E3095172528%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102704095&rft_id=info:pmid/39165730&rfr_iscdi=true |