Massive acceleration of S N 2 reaction using the oriented external electric field
Nucleophilic substitution is one of the most fundamental chemical reactions, and the pursuit of high reaction rates of the reaction is one of the ultimate goals in catalytic and organic chemistry. The reaction barrier of the nucleophilic substitution originates from the highly polar nature of the tr...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2024-08, Vol.15 (33), p.13486-13494 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13494 |
---|---|
container_issue | 33 |
container_start_page | 13486 |
container_title | Chemical science (Cambridge) |
container_volume | 15 |
creator | Tang, Chun Su, Meiling Lu, Taige Zheng, Jueting Wang, Juejun Zhou, Yu Zou, Yu-Ling Liu, Wenqing Huang, Ruiyun Xu, Wei Chen, Lijue Zhang, Yanxi Bai, Jie Yang, Yang Shi, Jia Liu, Junyang Hong, Wenjing |
description | Nucleophilic substitution is one of the most fundamental chemical reactions, and the pursuit of high reaction rates of the reaction is one of the ultimate goals in catalytic and organic chemistry. The reaction barrier of the nucleophilic substitution originates from the highly polar nature of the transition state that can be stabilized under the electric field created by the solvent environment. However, the intensity of the induced solvent-electric field is relatively small due to the random orientation of solvent molecules, which hinders the catalytic effects and restricts the reaction rates. This work shows that oriented external electric fields applied within a confined nanogap between two nanoscopic tips could accelerate the Menshutkin reaction by more than four orders of magnitude (over 39 000 times). The theoretical calculations reveal that the electric field inside the nanogap reduces the energy barrier to increase the reaction rate. Our work suggests the great potential of electrostatic catalysis for green synthesis in the future. |
doi_str_mv | 10.1039/d4sc03759f |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4SC03759F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39183916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586-8a60ef84801e060a4882fbef1fc447ea5f3d7efdbea8fe6956c4728be30620893</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMottRe_AGSs7A6-dhs9ijVqlAVae9LNploZLtbkq3ov3dttQPDvAzPzOEh5JzBFQNRXjuZLIgiL_0RGXOQLFO5KI8PmcOITFP6gKGEYDkvTslIlEwPrcbk9cmkFD6RGmuxwWj60LW083RJnymnEY3dbbYptG-0f0faxYBtj47iV4-xNQ0d7mwfg6U-YOPOyIk3TcLp35yQ1fxuNXvIFi_3j7ObRWZzrTJtFKDXUgNDUGCk1tzX6Jm3UhZoci9cgd7VaLRHVebKyoLrGgUoDroUE3K5f2tjl1JEX21iWJv4XTGofs1Ut3I525mZD_DFHt5s6zW6A_rvQfwAJ65ePQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Massive acceleration of S N 2 reaction using the oriented external electric field</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Tang, Chun ; Su, Meiling ; Lu, Taige ; Zheng, Jueting ; Wang, Juejun ; Zhou, Yu ; Zou, Yu-Ling ; Liu, Wenqing ; Huang, Ruiyun ; Xu, Wei ; Chen, Lijue ; Zhang, Yanxi ; Bai, Jie ; Yang, Yang ; Shi, Jia ; Liu, Junyang ; Hong, Wenjing</creator><creatorcontrib>Tang, Chun ; Su, Meiling ; Lu, Taige ; Zheng, Jueting ; Wang, Juejun ; Zhou, Yu ; Zou, Yu-Ling ; Liu, Wenqing ; Huang, Ruiyun ; Xu, Wei ; Chen, Lijue ; Zhang, Yanxi ; Bai, Jie ; Yang, Yang ; Shi, Jia ; Liu, Junyang ; Hong, Wenjing</creatorcontrib><description>Nucleophilic substitution is one of the most fundamental chemical reactions, and the pursuit of high reaction rates of the reaction is one of the ultimate goals in catalytic and organic chemistry. The reaction barrier of the nucleophilic substitution originates from the highly polar nature of the transition state that can be stabilized under the electric field created by the solvent environment. However, the intensity of the induced solvent-electric field is relatively small due to the random orientation of solvent molecules, which hinders the catalytic effects and restricts the reaction rates. This work shows that oriented external electric fields applied within a confined nanogap between two nanoscopic tips could accelerate the Menshutkin reaction by more than four orders of magnitude (over 39 000 times). The theoretical calculations reveal that the electric field inside the nanogap reduces the energy barrier to increase the reaction rate. Our work suggests the great potential of electrostatic catalysis for green synthesis in the future.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d4sc03759f</identifier><identifier>PMID: 39183916</identifier><language>eng</language><publisher>England</publisher><ispartof>Chemical science (Cambridge), 2024-08, Vol.15 (33), p.13486-13494</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c586-8a60ef84801e060a4882fbef1fc447ea5f3d7efdbea8fe6956c4728be30620893</cites><orcidid>0000-0003-1967-3398 ; 0000-0003-4080-6175 ; 0000-0002-7252-1900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39183916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Chun</creatorcontrib><creatorcontrib>Su, Meiling</creatorcontrib><creatorcontrib>Lu, Taige</creatorcontrib><creatorcontrib>Zheng, Jueting</creatorcontrib><creatorcontrib>Wang, Juejun</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Zou, Yu-Ling</creatorcontrib><creatorcontrib>Liu, Wenqing</creatorcontrib><creatorcontrib>Huang, Ruiyun</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Chen, Lijue</creatorcontrib><creatorcontrib>Zhang, Yanxi</creatorcontrib><creatorcontrib>Bai, Jie</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Shi, Jia</creatorcontrib><creatorcontrib>Liu, Junyang</creatorcontrib><creatorcontrib>Hong, Wenjing</creatorcontrib><title>Massive acceleration of S N 2 reaction using the oriented external electric field</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Nucleophilic substitution is one of the most fundamental chemical reactions, and the pursuit of high reaction rates of the reaction is one of the ultimate goals in catalytic and organic chemistry. The reaction barrier of the nucleophilic substitution originates from the highly polar nature of the transition state that can be stabilized under the electric field created by the solvent environment. However, the intensity of the induced solvent-electric field is relatively small due to the random orientation of solvent molecules, which hinders the catalytic effects and restricts the reaction rates. This work shows that oriented external electric fields applied within a confined nanogap between two nanoscopic tips could accelerate the Menshutkin reaction by more than four orders of magnitude (over 39 000 times). The theoretical calculations reveal that the electric field inside the nanogap reduces the energy barrier to increase the reaction rate. Our work suggests the great potential of electrostatic catalysis for green synthesis in the future.</description><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMottRe_AGSs7A6-dhs9ijVqlAVae9LNploZLtbkq3ov3dttQPDvAzPzOEh5JzBFQNRXjuZLIgiL_0RGXOQLFO5KI8PmcOITFP6gKGEYDkvTslIlEwPrcbk9cmkFD6RGmuxwWj60LW083RJnymnEY3dbbYptG-0f0faxYBtj47iV4-xNQ0d7mwfg6U-YOPOyIk3TcLp35yQ1fxuNXvIFi_3j7ObRWZzrTJtFKDXUgNDUGCk1tzX6Jm3UhZoci9cgd7VaLRHVebKyoLrGgUoDroUE3K5f2tjl1JEX21iWJv4XTGofs1Ut3I525mZD_DFHt5s6zW6A_rvQfwAJ65ePQ</recordid><startdate>20240822</startdate><enddate>20240822</enddate><creator>Tang, Chun</creator><creator>Su, Meiling</creator><creator>Lu, Taige</creator><creator>Zheng, Jueting</creator><creator>Wang, Juejun</creator><creator>Zhou, Yu</creator><creator>Zou, Yu-Ling</creator><creator>Liu, Wenqing</creator><creator>Huang, Ruiyun</creator><creator>Xu, Wei</creator><creator>Chen, Lijue</creator><creator>Zhang, Yanxi</creator><creator>Bai, Jie</creator><creator>Yang, Yang</creator><creator>Shi, Jia</creator><creator>Liu, Junyang</creator><creator>Hong, Wenjing</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1967-3398</orcidid><orcidid>https://orcid.org/0000-0003-4080-6175</orcidid><orcidid>https://orcid.org/0000-0002-7252-1900</orcidid></search><sort><creationdate>20240822</creationdate><title>Massive acceleration of S N 2 reaction using the oriented external electric field</title><author>Tang, Chun ; Su, Meiling ; Lu, Taige ; Zheng, Jueting ; Wang, Juejun ; Zhou, Yu ; Zou, Yu-Ling ; Liu, Wenqing ; Huang, Ruiyun ; Xu, Wei ; Chen, Lijue ; Zhang, Yanxi ; Bai, Jie ; Yang, Yang ; Shi, Jia ; Liu, Junyang ; Hong, Wenjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586-8a60ef84801e060a4882fbef1fc447ea5f3d7efdbea8fe6956c4728be30620893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Chun</creatorcontrib><creatorcontrib>Su, Meiling</creatorcontrib><creatorcontrib>Lu, Taige</creatorcontrib><creatorcontrib>Zheng, Jueting</creatorcontrib><creatorcontrib>Wang, Juejun</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Zou, Yu-Ling</creatorcontrib><creatorcontrib>Liu, Wenqing</creatorcontrib><creatorcontrib>Huang, Ruiyun</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Chen, Lijue</creatorcontrib><creatorcontrib>Zhang, Yanxi</creatorcontrib><creatorcontrib>Bai, Jie</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Shi, Jia</creatorcontrib><creatorcontrib>Liu, Junyang</creatorcontrib><creatorcontrib>Hong, Wenjing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Chun</au><au>Su, Meiling</au><au>Lu, Taige</au><au>Zheng, Jueting</au><au>Wang, Juejun</au><au>Zhou, Yu</au><au>Zou, Yu-Ling</au><au>Liu, Wenqing</au><au>Huang, Ruiyun</au><au>Xu, Wei</au><au>Chen, Lijue</au><au>Zhang, Yanxi</au><au>Bai, Jie</au><au>Yang, Yang</au><au>Shi, Jia</au><au>Liu, Junyang</au><au>Hong, Wenjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massive acceleration of S N 2 reaction using the oriented external electric field</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2024-08-22</date><risdate>2024</risdate><volume>15</volume><issue>33</issue><spage>13486</spage><epage>13494</epage><pages>13486-13494</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Nucleophilic substitution is one of the most fundamental chemical reactions, and the pursuit of high reaction rates of the reaction is one of the ultimate goals in catalytic and organic chemistry. The reaction barrier of the nucleophilic substitution originates from the highly polar nature of the transition state that can be stabilized under the electric field created by the solvent environment. However, the intensity of the induced solvent-electric field is relatively small due to the random orientation of solvent molecules, which hinders the catalytic effects and restricts the reaction rates. This work shows that oriented external electric fields applied within a confined nanogap between two nanoscopic tips could accelerate the Menshutkin reaction by more than four orders of magnitude (over 39 000 times). The theoretical calculations reveal that the electric field inside the nanogap reduces the energy barrier to increase the reaction rate. Our work suggests the great potential of electrostatic catalysis for green synthesis in the future.</abstract><cop>England</cop><pmid>39183916</pmid><doi>10.1039/d4sc03759f</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1967-3398</orcidid><orcidid>https://orcid.org/0000-0003-4080-6175</orcidid><orcidid>https://orcid.org/0000-0002-7252-1900</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2024-08, Vol.15 (33), p.13486-13494 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D4SC03759F |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
title | Massive acceleration of S N 2 reaction using the oriented external electric field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massive%20acceleration%20of%20S%20N%202%20reaction%20using%20the%20oriented%20external%20electric%20field&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Tang,%20Chun&rft.date=2024-08-22&rft.volume=15&rft.issue=33&rft.spage=13486&rft.epage=13494&rft.pages=13486-13494&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d4sc03759f&rft_dat=%3Cpubmed_cross%3E39183916%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39183916&rfr_iscdi=true |