Massive acceleration of S N 2 reaction using the oriented external electric field

Nucleophilic substitution is one of the most fundamental chemical reactions, and the pursuit of high reaction rates of the reaction is one of the ultimate goals in catalytic and organic chemistry. The reaction barrier of the nucleophilic substitution originates from the highly polar nature of the tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2024-08, Vol.15 (33), p.13486-13494
Hauptverfasser: Tang, Chun, Su, Meiling, Lu, Taige, Zheng, Jueting, Wang, Juejun, Zhou, Yu, Zou, Yu-Ling, Liu, Wenqing, Huang, Ruiyun, Xu, Wei, Chen, Lijue, Zhang, Yanxi, Bai, Jie, Yang, Yang, Shi, Jia, Liu, Junyang, Hong, Wenjing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13494
container_issue 33
container_start_page 13486
container_title Chemical science (Cambridge)
container_volume 15
creator Tang, Chun
Su, Meiling
Lu, Taige
Zheng, Jueting
Wang, Juejun
Zhou, Yu
Zou, Yu-Ling
Liu, Wenqing
Huang, Ruiyun
Xu, Wei
Chen, Lijue
Zhang, Yanxi
Bai, Jie
Yang, Yang
Shi, Jia
Liu, Junyang
Hong, Wenjing
description Nucleophilic substitution is one of the most fundamental chemical reactions, and the pursuit of high reaction rates of the reaction is one of the ultimate goals in catalytic and organic chemistry. The reaction barrier of the nucleophilic substitution originates from the highly polar nature of the transition state that can be stabilized under the electric field created by the solvent environment. However, the intensity of the induced solvent-electric field is relatively small due to the random orientation of solvent molecules, which hinders the catalytic effects and restricts the reaction rates. This work shows that oriented external electric fields applied within a confined nanogap between two nanoscopic tips could accelerate the Menshutkin reaction by more than four orders of magnitude (over 39 000 times). The theoretical calculations reveal that the electric field inside the nanogap reduces the energy barrier to increase the reaction rate. Our work suggests the great potential of electrostatic catalysis for green synthesis in the future.
doi_str_mv 10.1039/d4sc03759f
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4SC03759F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39183916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586-8a60ef84801e060a4882fbef1fc447ea5f3d7efdbea8fe6956c4728be30620893</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMottRe_AGSs7A6-dhs9ijVqlAVae9LNploZLtbkq3ov3dttQPDvAzPzOEh5JzBFQNRXjuZLIgiL_0RGXOQLFO5KI8PmcOITFP6gKGEYDkvTslIlEwPrcbk9cmkFD6RGmuxwWj60LW083RJnymnEY3dbbYptG-0f0faxYBtj47iV4-xNQ0d7mwfg6U-YOPOyIk3TcLp35yQ1fxuNXvIFi_3j7ObRWZzrTJtFKDXUgNDUGCk1tzX6Jm3UhZoci9cgd7VaLRHVebKyoLrGgUoDroUE3K5f2tjl1JEX21iWJv4XTGofs1Ut3I525mZD_DFHt5s6zW6A_rvQfwAJ65ePQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Massive acceleration of S N 2 reaction using the oriented external electric field</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Tang, Chun ; Su, Meiling ; Lu, Taige ; Zheng, Jueting ; Wang, Juejun ; Zhou, Yu ; Zou, Yu-Ling ; Liu, Wenqing ; Huang, Ruiyun ; Xu, Wei ; Chen, Lijue ; Zhang, Yanxi ; Bai, Jie ; Yang, Yang ; Shi, Jia ; Liu, Junyang ; Hong, Wenjing</creator><creatorcontrib>Tang, Chun ; Su, Meiling ; Lu, Taige ; Zheng, Jueting ; Wang, Juejun ; Zhou, Yu ; Zou, Yu-Ling ; Liu, Wenqing ; Huang, Ruiyun ; Xu, Wei ; Chen, Lijue ; Zhang, Yanxi ; Bai, Jie ; Yang, Yang ; Shi, Jia ; Liu, Junyang ; Hong, Wenjing</creatorcontrib><description>Nucleophilic substitution is one of the most fundamental chemical reactions, and the pursuit of high reaction rates of the reaction is one of the ultimate goals in catalytic and organic chemistry. The reaction barrier of the nucleophilic substitution originates from the highly polar nature of the transition state that can be stabilized under the electric field created by the solvent environment. However, the intensity of the induced solvent-electric field is relatively small due to the random orientation of solvent molecules, which hinders the catalytic effects and restricts the reaction rates. This work shows that oriented external electric fields applied within a confined nanogap between two nanoscopic tips could accelerate the Menshutkin reaction by more than four orders of magnitude (over 39 000 times). The theoretical calculations reveal that the electric field inside the nanogap reduces the energy barrier to increase the reaction rate. Our work suggests the great potential of electrostatic catalysis for green synthesis in the future.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d4sc03759f</identifier><identifier>PMID: 39183916</identifier><language>eng</language><publisher>England</publisher><ispartof>Chemical science (Cambridge), 2024-08, Vol.15 (33), p.13486-13494</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c586-8a60ef84801e060a4882fbef1fc447ea5f3d7efdbea8fe6956c4728be30620893</cites><orcidid>0000-0003-1967-3398 ; 0000-0003-4080-6175 ; 0000-0002-7252-1900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39183916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Chun</creatorcontrib><creatorcontrib>Su, Meiling</creatorcontrib><creatorcontrib>Lu, Taige</creatorcontrib><creatorcontrib>Zheng, Jueting</creatorcontrib><creatorcontrib>Wang, Juejun</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Zou, Yu-Ling</creatorcontrib><creatorcontrib>Liu, Wenqing</creatorcontrib><creatorcontrib>Huang, Ruiyun</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Chen, Lijue</creatorcontrib><creatorcontrib>Zhang, Yanxi</creatorcontrib><creatorcontrib>Bai, Jie</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Shi, Jia</creatorcontrib><creatorcontrib>Liu, Junyang</creatorcontrib><creatorcontrib>Hong, Wenjing</creatorcontrib><title>Massive acceleration of S N 2 reaction using the oriented external electric field</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Nucleophilic substitution is one of the most fundamental chemical reactions, and the pursuit of high reaction rates of the reaction is one of the ultimate goals in catalytic and organic chemistry. The reaction barrier of the nucleophilic substitution originates from the highly polar nature of the transition state that can be stabilized under the electric field created by the solvent environment. However, the intensity of the induced solvent-electric field is relatively small due to the random orientation of solvent molecules, which hinders the catalytic effects and restricts the reaction rates. This work shows that oriented external electric fields applied within a confined nanogap between two nanoscopic tips could accelerate the Menshutkin reaction by more than four orders of magnitude (over 39 000 times). The theoretical calculations reveal that the electric field inside the nanogap reduces the energy barrier to increase the reaction rate. Our work suggests the great potential of electrostatic catalysis for green synthesis in the future.</description><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMottRe_AGSs7A6-dhs9ijVqlAVae9LNploZLtbkq3ov3dttQPDvAzPzOEh5JzBFQNRXjuZLIgiL_0RGXOQLFO5KI8PmcOITFP6gKGEYDkvTslIlEwPrcbk9cmkFD6RGmuxwWj60LW083RJnymnEY3dbbYptG-0f0faxYBtj47iV4-xNQ0d7mwfg6U-YOPOyIk3TcLp35yQ1fxuNXvIFi_3j7ObRWZzrTJtFKDXUgNDUGCk1tzX6Jm3UhZoci9cgd7VaLRHVebKyoLrGgUoDroUE3K5f2tjl1JEX21iWJv4XTGofs1Ut3I525mZD_DFHt5s6zW6A_rvQfwAJ65ePQ</recordid><startdate>20240822</startdate><enddate>20240822</enddate><creator>Tang, Chun</creator><creator>Su, Meiling</creator><creator>Lu, Taige</creator><creator>Zheng, Jueting</creator><creator>Wang, Juejun</creator><creator>Zhou, Yu</creator><creator>Zou, Yu-Ling</creator><creator>Liu, Wenqing</creator><creator>Huang, Ruiyun</creator><creator>Xu, Wei</creator><creator>Chen, Lijue</creator><creator>Zhang, Yanxi</creator><creator>Bai, Jie</creator><creator>Yang, Yang</creator><creator>Shi, Jia</creator><creator>Liu, Junyang</creator><creator>Hong, Wenjing</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1967-3398</orcidid><orcidid>https://orcid.org/0000-0003-4080-6175</orcidid><orcidid>https://orcid.org/0000-0002-7252-1900</orcidid></search><sort><creationdate>20240822</creationdate><title>Massive acceleration of S N 2 reaction using the oriented external electric field</title><author>Tang, Chun ; Su, Meiling ; Lu, Taige ; Zheng, Jueting ; Wang, Juejun ; Zhou, Yu ; Zou, Yu-Ling ; Liu, Wenqing ; Huang, Ruiyun ; Xu, Wei ; Chen, Lijue ; Zhang, Yanxi ; Bai, Jie ; Yang, Yang ; Shi, Jia ; Liu, Junyang ; Hong, Wenjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586-8a60ef84801e060a4882fbef1fc447ea5f3d7efdbea8fe6956c4728be30620893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Chun</creatorcontrib><creatorcontrib>Su, Meiling</creatorcontrib><creatorcontrib>Lu, Taige</creatorcontrib><creatorcontrib>Zheng, Jueting</creatorcontrib><creatorcontrib>Wang, Juejun</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Zou, Yu-Ling</creatorcontrib><creatorcontrib>Liu, Wenqing</creatorcontrib><creatorcontrib>Huang, Ruiyun</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Chen, Lijue</creatorcontrib><creatorcontrib>Zhang, Yanxi</creatorcontrib><creatorcontrib>Bai, Jie</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Shi, Jia</creatorcontrib><creatorcontrib>Liu, Junyang</creatorcontrib><creatorcontrib>Hong, Wenjing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Chun</au><au>Su, Meiling</au><au>Lu, Taige</au><au>Zheng, Jueting</au><au>Wang, Juejun</au><au>Zhou, Yu</au><au>Zou, Yu-Ling</au><au>Liu, Wenqing</au><au>Huang, Ruiyun</au><au>Xu, Wei</au><au>Chen, Lijue</au><au>Zhang, Yanxi</au><au>Bai, Jie</au><au>Yang, Yang</au><au>Shi, Jia</au><au>Liu, Junyang</au><au>Hong, Wenjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massive acceleration of S N 2 reaction using the oriented external electric field</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2024-08-22</date><risdate>2024</risdate><volume>15</volume><issue>33</issue><spage>13486</spage><epage>13494</epage><pages>13486-13494</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Nucleophilic substitution is one of the most fundamental chemical reactions, and the pursuit of high reaction rates of the reaction is one of the ultimate goals in catalytic and organic chemistry. The reaction barrier of the nucleophilic substitution originates from the highly polar nature of the transition state that can be stabilized under the electric field created by the solvent environment. However, the intensity of the induced solvent-electric field is relatively small due to the random orientation of solvent molecules, which hinders the catalytic effects and restricts the reaction rates. This work shows that oriented external electric fields applied within a confined nanogap between two nanoscopic tips could accelerate the Menshutkin reaction by more than four orders of magnitude (over 39 000 times). The theoretical calculations reveal that the electric field inside the nanogap reduces the energy barrier to increase the reaction rate. Our work suggests the great potential of electrostatic catalysis for green synthesis in the future.</abstract><cop>England</cop><pmid>39183916</pmid><doi>10.1039/d4sc03759f</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1967-3398</orcidid><orcidid>https://orcid.org/0000-0003-4080-6175</orcidid><orcidid>https://orcid.org/0000-0002-7252-1900</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2024-08, Vol.15 (33), p.13486-13494
issn 2041-6520
2041-6539
language eng
recordid cdi_crossref_primary_10_1039_D4SC03759F
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
title Massive acceleration of S N 2 reaction using the oriented external electric field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massive%20acceleration%20of%20S%20N%202%20reaction%20using%20the%20oriented%20external%20electric%20field&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Tang,%20Chun&rft.date=2024-08-22&rft.volume=15&rft.issue=33&rft.spage=13486&rft.epage=13494&rft.pages=13486-13494&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d4sc03759f&rft_dat=%3Cpubmed_cross%3E39183916%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39183916&rfr_iscdi=true