Mori generalized master equations offer an efficient route to predict and interpret polaron transport
Predicting how a material's microscopic structure and dynamics determine its transport properties remains a fundamental challenge. To alleviate this task's often prohibitive computational expense, we propose a Mori-based generalized quantum master equation (GQME) to predict the frequency-r...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2024-10, Vol.15 (4), p.16715-16723 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16723 |
---|---|
container_issue | 4 |
container_start_page | 16715 |
container_title | Chemical science (Cambridge) |
container_volume | 15 |
creator | Bhattacharyya, Srijan Sayer, Thomas Montoya-Castillo, Andrés |
description | Predicting how a material's microscopic structure and dynamics determine its transport properties remains a fundamental challenge. To alleviate this task's often prohibitive computational expense, we propose a Mori-based generalized quantum master equation (GQME) to predict the frequency-resolved conductivity of small-polaron forming systems described by the dispersive Holstein model. Unlike previous GQME-based approaches to transport that scale with the system size and only give access to the DC conductivity, our method requires only one calculation and yields both the DC and AC mobilities. We further show how to easily augment our GQME with numerically accessible derivatives of the current to increase computational efficiency, collectively offering computational cost reductions of up to 90%, depending on the transport regime. Finally, we leverage our exact simulations to demonstrate the limited applicability of the celebrated and widely invoked Drude-Smith model in small-polaron forming systems. We instead introduce a cumulant-based analysis of experimentally accessible frequency data to infer the microscopic Hamiltonian parameters. This approach promises to provide valuable insights into material properties and facilitate guided design by linking macroscopic terahertz measurements to the microscopic details of small polaron-forming systems.
Our work introduces a tool to minimize the cost of conductivity predictions in small polaron-forming materials and a means to map measured conductivities to polaron energy scales, overcoming the limitations of the phenomenological Drude-Smith model. |
doi_str_mv | 10.1039/d4sc03144j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4SC03144J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117319450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-d6c010ec1d469d23d33e80995de4a998ae55b3c8b953d8f93b99ac930e6dba5f3</originalsourceid><addsrcrecordid>eNpdks1vFSEUxUlj0zZtN-5rSNwYk6cwF-YNK9M8P9qmxoW6JgzcqbzMgykwTepfL_rap5YNH_d3T87NgZDnnL3hDNRbJ7JlwIVY75Gjhgm-aCWoZ7tzww7Jac5rVhcAl83ygByCggYkb48Ifo7J0xsMmMzof6KjG5MLJoq3syk-hkzjMNS7CRSHwVuPodAU54K0RDoldN6WWnXUh9pXHwqd4mhSDLQkE_IUUzkh-4MZM54-7Mfk-8cP31YXi-svny5X59cLC7wrC9daxhla7kSrXAMOADumlHQojFKdQSl7sF2vJLhuUNArZawChq3rjRzgmLzb6k5zv0Fnq9c6lp6S35h0r6Px-v9K8D_0TbzTnIuGdXJZFV49KKR4O2MueuOzxXE0AeOcNfDqZ9mC4hV9-QRdxzmFOl-l-BK4EpJV6vWWsinmnHDYueFM_05QvxdfV38SvKrwi3_979DHvCpwtgVStrvq3y8AvwBQQqJT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117319450</pqid></control><display><type>article</type><title>Mori generalized master equations offer an efficient route to predict and interpret polaron transport</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Bhattacharyya, Srijan ; Sayer, Thomas ; Montoya-Castillo, Andrés</creator><creatorcontrib>Bhattacharyya, Srijan ; Sayer, Thomas ; Montoya-Castillo, Andrés</creatorcontrib><description>Predicting how a material's microscopic structure and dynamics determine its transport properties remains a fundamental challenge. To alleviate this task's often prohibitive computational expense, we propose a Mori-based generalized quantum master equation (GQME) to predict the frequency-resolved conductivity of small-polaron forming systems described by the dispersive Holstein model. Unlike previous GQME-based approaches to transport that scale with the system size and only give access to the DC conductivity, our method requires only one calculation and yields both the DC and AC mobilities. We further show how to easily augment our GQME with numerically accessible derivatives of the current to increase computational efficiency, collectively offering computational cost reductions of up to 90%, depending on the transport regime. Finally, we leverage our exact simulations to demonstrate the limited applicability of the celebrated and widely invoked Drude-Smith model in small-polaron forming systems. We instead introduce a cumulant-based analysis of experimentally accessible frequency data to infer the microscopic Hamiltonian parameters. This approach promises to provide valuable insights into material properties and facilitate guided design by linking macroscopic terahertz measurements to the microscopic details of small polaron-forming systems.
Our work introduces a tool to minimize the cost of conductivity predictions in small polaron-forming materials and a means to map measured conductivities to polaron energy scales, overcoming the limitations of the phenomenological Drude-Smith model.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d4sc03144j</identifier><identifier>PMID: 39323516</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Accessibility ; Alternating current ; Chemistry ; Computational efficiency ; Computing costs ; Cost analysis ; Material properties ; Polarons ; Transport properties</subject><ispartof>Chemical science (Cambridge), 2024-10, Vol.15 (4), p.16715-16723</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-d6c010ec1d469d23d33e80995de4a998ae55b3c8b953d8f93b99ac930e6dba5f3</cites><orcidid>0000-0003-3037-3695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420857/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420857/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39323516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhattacharyya, Srijan</creatorcontrib><creatorcontrib>Sayer, Thomas</creatorcontrib><creatorcontrib>Montoya-Castillo, Andrés</creatorcontrib><title>Mori generalized master equations offer an efficient route to predict and interpret polaron transport</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Predicting how a material's microscopic structure and dynamics determine its transport properties remains a fundamental challenge. To alleviate this task's often prohibitive computational expense, we propose a Mori-based generalized quantum master equation (GQME) to predict the frequency-resolved conductivity of small-polaron forming systems described by the dispersive Holstein model. Unlike previous GQME-based approaches to transport that scale with the system size and only give access to the DC conductivity, our method requires only one calculation and yields both the DC and AC mobilities. We further show how to easily augment our GQME with numerically accessible derivatives of the current to increase computational efficiency, collectively offering computational cost reductions of up to 90%, depending on the transport regime. Finally, we leverage our exact simulations to demonstrate the limited applicability of the celebrated and widely invoked Drude-Smith model in small-polaron forming systems. We instead introduce a cumulant-based analysis of experimentally accessible frequency data to infer the microscopic Hamiltonian parameters. This approach promises to provide valuable insights into material properties and facilitate guided design by linking macroscopic terahertz measurements to the microscopic details of small polaron-forming systems.
Our work introduces a tool to minimize the cost of conductivity predictions in small polaron-forming materials and a means to map measured conductivities to polaron energy scales, overcoming the limitations of the phenomenological Drude-Smith model.</description><subject>Accessibility</subject><subject>Alternating current</subject><subject>Chemistry</subject><subject>Computational efficiency</subject><subject>Computing costs</subject><subject>Cost analysis</subject><subject>Material properties</subject><subject>Polarons</subject><subject>Transport properties</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdks1vFSEUxUlj0zZtN-5rSNwYk6cwF-YNK9M8P9qmxoW6JgzcqbzMgykwTepfL_rap5YNH_d3T87NgZDnnL3hDNRbJ7JlwIVY75Gjhgm-aCWoZ7tzww7Jac5rVhcAl83ygByCggYkb48Ifo7J0xsMmMzof6KjG5MLJoq3syk-hkzjMNS7CRSHwVuPodAU54K0RDoldN6WWnXUh9pXHwqd4mhSDLQkE_IUUzkh-4MZM54-7Mfk-8cP31YXi-svny5X59cLC7wrC9daxhla7kSrXAMOADumlHQojFKdQSl7sF2vJLhuUNArZawChq3rjRzgmLzb6k5zv0Fnq9c6lp6S35h0r6Px-v9K8D_0TbzTnIuGdXJZFV49KKR4O2MueuOzxXE0AeOcNfDqZ9mC4hV9-QRdxzmFOl-l-BK4EpJV6vWWsinmnHDYueFM_05QvxdfV38SvKrwi3_979DHvCpwtgVStrvq3y8AvwBQQqJT</recordid><startdate>20241017</startdate><enddate>20241017</enddate><creator>Bhattacharyya, Srijan</creator><creator>Sayer, Thomas</creator><creator>Montoya-Castillo, Andrés</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3037-3695</orcidid></search><sort><creationdate>20241017</creationdate><title>Mori generalized master equations offer an efficient route to predict and interpret polaron transport</title><author>Bhattacharyya, Srijan ; Sayer, Thomas ; Montoya-Castillo, Andrés</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-d6c010ec1d469d23d33e80995de4a998ae55b3c8b953d8f93b99ac930e6dba5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accessibility</topic><topic>Alternating current</topic><topic>Chemistry</topic><topic>Computational efficiency</topic><topic>Computing costs</topic><topic>Cost analysis</topic><topic>Material properties</topic><topic>Polarons</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharyya, Srijan</creatorcontrib><creatorcontrib>Sayer, Thomas</creatorcontrib><creatorcontrib>Montoya-Castillo, Andrés</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhattacharyya, Srijan</au><au>Sayer, Thomas</au><au>Montoya-Castillo, Andrés</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mori generalized master equations offer an efficient route to predict and interpret polaron transport</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2024-10-17</date><risdate>2024</risdate><volume>15</volume><issue>4</issue><spage>16715</spage><epage>16723</epage><pages>16715-16723</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Predicting how a material's microscopic structure and dynamics determine its transport properties remains a fundamental challenge. To alleviate this task's often prohibitive computational expense, we propose a Mori-based generalized quantum master equation (GQME) to predict the frequency-resolved conductivity of small-polaron forming systems described by the dispersive Holstein model. Unlike previous GQME-based approaches to transport that scale with the system size and only give access to the DC conductivity, our method requires only one calculation and yields both the DC and AC mobilities. We further show how to easily augment our GQME with numerically accessible derivatives of the current to increase computational efficiency, collectively offering computational cost reductions of up to 90%, depending on the transport regime. Finally, we leverage our exact simulations to demonstrate the limited applicability of the celebrated and widely invoked Drude-Smith model in small-polaron forming systems. We instead introduce a cumulant-based analysis of experimentally accessible frequency data to infer the microscopic Hamiltonian parameters. This approach promises to provide valuable insights into material properties and facilitate guided design by linking macroscopic terahertz measurements to the microscopic details of small polaron-forming systems.
Our work introduces a tool to minimize the cost of conductivity predictions in small polaron-forming materials and a means to map measured conductivities to polaron energy scales, overcoming the limitations of the phenomenological Drude-Smith model.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39323516</pmid><doi>10.1039/d4sc03144j</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3037-3695</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2024-10, Vol.15 (4), p.16715-16723 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D4SC03144J |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
subjects | Accessibility Alternating current Chemistry Computational efficiency Computing costs Cost analysis Material properties Polarons Transport properties |
title | Mori generalized master equations offer an efficient route to predict and interpret polaron transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mori%20generalized%20master%20equations%20offer%20an%20efficient%20route%20to%20predict%20and%20interpret%20polaron%20transport&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Bhattacharyya,%20Srijan&rft.date=2024-10-17&rft.volume=15&rft.issue=4&rft.spage=16715&rft.epage=16723&rft.pages=16715-16723&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d4sc03144j&rft_dat=%3Cproquest_cross%3E3117319450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117319450&rft_id=info:pmid/39323516&rfr_iscdi=true |