Mori generalized master equations offer an efficient route to predict and interpret polaron transport

Predicting how a material's microscopic structure and dynamics determine its transport properties remains a fundamental challenge. To alleviate this task's often prohibitive computational expense, we propose a Mori-based generalized quantum master equation (GQME) to predict the frequency-r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2024-10, Vol.15 (4), p.16715-16723
Hauptverfasser: Bhattacharyya, Srijan, Sayer, Thomas, Montoya-Castillo, Andrés
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16723
container_issue 4
container_start_page 16715
container_title Chemical science (Cambridge)
container_volume 15
creator Bhattacharyya, Srijan
Sayer, Thomas
Montoya-Castillo, Andrés
description Predicting how a material's microscopic structure and dynamics determine its transport properties remains a fundamental challenge. To alleviate this task's often prohibitive computational expense, we propose a Mori-based generalized quantum master equation (GQME) to predict the frequency-resolved conductivity of small-polaron forming systems described by the dispersive Holstein model. Unlike previous GQME-based approaches to transport that scale with the system size and only give access to the DC conductivity, our method requires only one calculation and yields both the DC and AC mobilities. We further show how to easily augment our GQME with numerically accessible derivatives of the current to increase computational efficiency, collectively offering computational cost reductions of up to 90%, depending on the transport regime. Finally, we leverage our exact simulations to demonstrate the limited applicability of the celebrated and widely invoked Drude-Smith model in small-polaron forming systems. We instead introduce a cumulant-based analysis of experimentally accessible frequency data to infer the microscopic Hamiltonian parameters. This approach promises to provide valuable insights into material properties and facilitate guided design by linking macroscopic terahertz measurements to the microscopic details of small polaron-forming systems. Our work introduces a tool to minimize the cost of conductivity predictions in small polaron-forming materials and a means to map measured conductivities to polaron energy scales, overcoming the limitations of the phenomenological Drude-Smith model.
doi_str_mv 10.1039/d4sc03144j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4SC03144J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117319450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-d6c010ec1d469d23d33e80995de4a998ae55b3c8b953d8f93b99ac930e6dba5f3</originalsourceid><addsrcrecordid>eNpdks1vFSEUxUlj0zZtN-5rSNwYk6cwF-YNK9M8P9qmxoW6JgzcqbzMgykwTepfL_rap5YNH_d3T87NgZDnnL3hDNRbJ7JlwIVY75Gjhgm-aCWoZ7tzww7Jac5rVhcAl83ygByCggYkb48Ifo7J0xsMmMzof6KjG5MLJoq3syk-hkzjMNS7CRSHwVuPodAU54K0RDoldN6WWnXUh9pXHwqd4mhSDLQkE_IUUzkh-4MZM54-7Mfk-8cP31YXi-svny5X59cLC7wrC9daxhla7kSrXAMOADumlHQojFKdQSl7sF2vJLhuUNArZawChq3rjRzgmLzb6k5zv0Fnq9c6lp6S35h0r6Px-v9K8D_0TbzTnIuGdXJZFV49KKR4O2MueuOzxXE0AeOcNfDqZ9mC4hV9-QRdxzmFOl-l-BK4EpJV6vWWsinmnHDYueFM_05QvxdfV38SvKrwi3_979DHvCpwtgVStrvq3y8AvwBQQqJT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117319450</pqid></control><display><type>article</type><title>Mori generalized master equations offer an efficient route to predict and interpret polaron transport</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Bhattacharyya, Srijan ; Sayer, Thomas ; Montoya-Castillo, Andrés</creator><creatorcontrib>Bhattacharyya, Srijan ; Sayer, Thomas ; Montoya-Castillo, Andrés</creatorcontrib><description>Predicting how a material's microscopic structure and dynamics determine its transport properties remains a fundamental challenge. To alleviate this task's often prohibitive computational expense, we propose a Mori-based generalized quantum master equation (GQME) to predict the frequency-resolved conductivity of small-polaron forming systems described by the dispersive Holstein model. Unlike previous GQME-based approaches to transport that scale with the system size and only give access to the DC conductivity, our method requires only one calculation and yields both the DC and AC mobilities. We further show how to easily augment our GQME with numerically accessible derivatives of the current to increase computational efficiency, collectively offering computational cost reductions of up to 90%, depending on the transport regime. Finally, we leverage our exact simulations to demonstrate the limited applicability of the celebrated and widely invoked Drude-Smith model in small-polaron forming systems. We instead introduce a cumulant-based analysis of experimentally accessible frequency data to infer the microscopic Hamiltonian parameters. This approach promises to provide valuable insights into material properties and facilitate guided design by linking macroscopic terahertz measurements to the microscopic details of small polaron-forming systems. Our work introduces a tool to minimize the cost of conductivity predictions in small polaron-forming materials and a means to map measured conductivities to polaron energy scales, overcoming the limitations of the phenomenological Drude-Smith model.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d4sc03144j</identifier><identifier>PMID: 39323516</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Accessibility ; Alternating current ; Chemistry ; Computational efficiency ; Computing costs ; Cost analysis ; Material properties ; Polarons ; Transport properties</subject><ispartof>Chemical science (Cambridge), 2024-10, Vol.15 (4), p.16715-16723</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-d6c010ec1d469d23d33e80995de4a998ae55b3c8b953d8f93b99ac930e6dba5f3</cites><orcidid>0000-0003-3037-3695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420857/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420857/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39323516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhattacharyya, Srijan</creatorcontrib><creatorcontrib>Sayer, Thomas</creatorcontrib><creatorcontrib>Montoya-Castillo, Andrés</creatorcontrib><title>Mori generalized master equations offer an efficient route to predict and interpret polaron transport</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Predicting how a material's microscopic structure and dynamics determine its transport properties remains a fundamental challenge. To alleviate this task's often prohibitive computational expense, we propose a Mori-based generalized quantum master equation (GQME) to predict the frequency-resolved conductivity of small-polaron forming systems described by the dispersive Holstein model. Unlike previous GQME-based approaches to transport that scale with the system size and only give access to the DC conductivity, our method requires only one calculation and yields both the DC and AC mobilities. We further show how to easily augment our GQME with numerically accessible derivatives of the current to increase computational efficiency, collectively offering computational cost reductions of up to 90%, depending on the transport regime. Finally, we leverage our exact simulations to demonstrate the limited applicability of the celebrated and widely invoked Drude-Smith model in small-polaron forming systems. We instead introduce a cumulant-based analysis of experimentally accessible frequency data to infer the microscopic Hamiltonian parameters. This approach promises to provide valuable insights into material properties and facilitate guided design by linking macroscopic terahertz measurements to the microscopic details of small polaron-forming systems. Our work introduces a tool to minimize the cost of conductivity predictions in small polaron-forming materials and a means to map measured conductivities to polaron energy scales, overcoming the limitations of the phenomenological Drude-Smith model.</description><subject>Accessibility</subject><subject>Alternating current</subject><subject>Chemistry</subject><subject>Computational efficiency</subject><subject>Computing costs</subject><subject>Cost analysis</subject><subject>Material properties</subject><subject>Polarons</subject><subject>Transport properties</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdks1vFSEUxUlj0zZtN-5rSNwYk6cwF-YNK9M8P9qmxoW6JgzcqbzMgykwTepfL_rap5YNH_d3T87NgZDnnL3hDNRbJ7JlwIVY75Gjhgm-aCWoZ7tzww7Jac5rVhcAl83ygByCggYkb48Ifo7J0xsMmMzof6KjG5MLJoq3syk-hkzjMNS7CRSHwVuPodAU54K0RDoldN6WWnXUh9pXHwqd4mhSDLQkE_IUUzkh-4MZM54-7Mfk-8cP31YXi-svny5X59cLC7wrC9daxhla7kSrXAMOADumlHQojFKdQSl7sF2vJLhuUNArZawChq3rjRzgmLzb6k5zv0Fnq9c6lp6S35h0r6Px-v9K8D_0TbzTnIuGdXJZFV49KKR4O2MueuOzxXE0AeOcNfDqZ9mC4hV9-QRdxzmFOl-l-BK4EpJV6vWWsinmnHDYueFM_05QvxdfV38SvKrwi3_979DHvCpwtgVStrvq3y8AvwBQQqJT</recordid><startdate>20241017</startdate><enddate>20241017</enddate><creator>Bhattacharyya, Srijan</creator><creator>Sayer, Thomas</creator><creator>Montoya-Castillo, Andrés</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3037-3695</orcidid></search><sort><creationdate>20241017</creationdate><title>Mori generalized master equations offer an efficient route to predict and interpret polaron transport</title><author>Bhattacharyya, Srijan ; Sayer, Thomas ; Montoya-Castillo, Andrés</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-d6c010ec1d469d23d33e80995de4a998ae55b3c8b953d8f93b99ac930e6dba5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accessibility</topic><topic>Alternating current</topic><topic>Chemistry</topic><topic>Computational efficiency</topic><topic>Computing costs</topic><topic>Cost analysis</topic><topic>Material properties</topic><topic>Polarons</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharyya, Srijan</creatorcontrib><creatorcontrib>Sayer, Thomas</creatorcontrib><creatorcontrib>Montoya-Castillo, Andrés</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhattacharyya, Srijan</au><au>Sayer, Thomas</au><au>Montoya-Castillo, Andrés</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mori generalized master equations offer an efficient route to predict and interpret polaron transport</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2024-10-17</date><risdate>2024</risdate><volume>15</volume><issue>4</issue><spage>16715</spage><epage>16723</epage><pages>16715-16723</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Predicting how a material's microscopic structure and dynamics determine its transport properties remains a fundamental challenge. To alleviate this task's often prohibitive computational expense, we propose a Mori-based generalized quantum master equation (GQME) to predict the frequency-resolved conductivity of small-polaron forming systems described by the dispersive Holstein model. Unlike previous GQME-based approaches to transport that scale with the system size and only give access to the DC conductivity, our method requires only one calculation and yields both the DC and AC mobilities. We further show how to easily augment our GQME with numerically accessible derivatives of the current to increase computational efficiency, collectively offering computational cost reductions of up to 90%, depending on the transport regime. Finally, we leverage our exact simulations to demonstrate the limited applicability of the celebrated and widely invoked Drude-Smith model in small-polaron forming systems. We instead introduce a cumulant-based analysis of experimentally accessible frequency data to infer the microscopic Hamiltonian parameters. This approach promises to provide valuable insights into material properties and facilitate guided design by linking macroscopic terahertz measurements to the microscopic details of small polaron-forming systems. Our work introduces a tool to minimize the cost of conductivity predictions in small polaron-forming materials and a means to map measured conductivities to polaron energy scales, overcoming the limitations of the phenomenological Drude-Smith model.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39323516</pmid><doi>10.1039/d4sc03144j</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3037-3695</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2024-10, Vol.15 (4), p.16715-16723
issn 2041-6520
2041-6539
language eng
recordid cdi_crossref_primary_10_1039_D4SC03144J
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Accessibility
Alternating current
Chemistry
Computational efficiency
Computing costs
Cost analysis
Material properties
Polarons
Transport properties
title Mori generalized master equations offer an efficient route to predict and interpret polaron transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mori%20generalized%20master%20equations%20offer%20an%20efficient%20route%20to%20predict%20and%20interpret%20polaron%20transport&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Bhattacharyya,%20Srijan&rft.date=2024-10-17&rft.volume=15&rft.issue=4&rft.spage=16715&rft.epage=16723&rft.pages=16715-16723&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d4sc03144j&rft_dat=%3Cproquest_cross%3E3117319450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117319450&rft_id=info:pmid/39323516&rfr_iscdi=true