Ready-to-use graphene-related material-added multi-grade oils: characterization and performance in car engine working conditions

The need for energy efficiency is leading to the growing use of additives to enhance the performance of oil in automotive engines. Great interest is focused on nano-additives even if to date there is still no practical use in commercial liquid lubricants. Herein, the potential of industrially scalab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2024-06, Vol.14 (26), p.1873-18738
Hauptverfasser: Garcia Lleo, Miquel, Sacchetti, Valentina, Cacciola, Claudio, Medri, Elena, Ligi, Simone, Liscio, Andrea, Minelli, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The need for energy efficiency is leading to the growing use of additives to enhance the performance of oil in automotive engines. Great interest is focused on nano-additives even if to date there is still no practical use in commercial liquid lubricants. Herein, the potential of industrially scalable and low-cost graphene-related materials (GRMs) as additives to enhance the performance of oil in automotive engines is explored. The use of polyalkylmethacrylate dispersants, the most common key additives to formulate "green technology" lubricant oils liquid-processed GRM, is explored, investigating the role of the lateral size and the chemical analysis in the stability of the lubricant GRM dispersions. Showing the maximum duration of stability and a production method that avoids the use of strong oxidants, rheological tests were then focused on multilayered graphene flakes with sub-micrometre lateral size mixed in two commercial oil grades (5W-30 and 5W-40) under conditions similar to those of engine operation. The addition of such a filler increases the viscosity without affecting the Newtonian fluid behavior, while four-ball tests show a reduction in wear, indicating improved lubrication performance. Finally, preliminary bench-test on a commercial car engine showed increased power output corresponding to enhanced engine efficiency. The results clearly indicate the effective improvement in lubricating commercial oils due to GRM additives. Development of long stable graphene-based lubricant blend based on fully commercial components. Friction, wear and rheological analysis and preliminary bench-test on a commercial car.
ISSN:2046-2069
2046-2069
DOI:10.1039/d4ra02406k