Interfacial modification engineering for efficient and stable MA-free wide-bandgap perovskite solar cells by grain regrowth
Wide bandgap (WBG) perovskites are a key component of perovskite-silicon and all-perovskite tandem solar cells, which provides an effective way to exceed the efficiency limit of single junction solar cells. However, the small perovskite grain size and large defect density of WBG perovskites suppress...
Gespeichert in:
Veröffentlicht in: | Materials chemistry frontiers 2024-09, Vol.8 (18), p.317-327 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 327 |
---|---|
container_issue | 18 |
container_start_page | 317 |
container_title | Materials chemistry frontiers |
container_volume | 8 |
creator | Huang, Hao Li, Ziyu Chen, Zhijia Li, Denggao Shi, Hongxi Zhu, Keqi Wang, Chenyu Lu, Zhangbo Huang, Shihua Chi, Dan |
description | Wide bandgap (WBG) perovskites are a key component of perovskite-silicon and all-perovskite tandem solar cells, which provides an effective way to exceed the efficiency limit of single junction solar cells. However, the small perovskite grain size and large defect density of WBG perovskites suppress the further improvement of the device power conversion efficiency (PCE). In this work, we offer a grain regrowth and defect passivation (GRDP) strategy to inhibit the nonradiative recombination loss at the perovskite grain boundary and in bulk simultaneously. Introducing guanidine thiocyanate (GuSCN) by post-treating the perovskite film can address this issue. GuSCN promotes the regrowth of perovskite grains and makes the grain size of perovskites larger than 1700 nm, thus reducing the defect density of perovskite solar cells (PSCs) by one order of magnitude. Consequently, a MA-free opaque WBG PSC achieves 20.92% PCE with excellent stability, maintaining 95.4% of its initial PCE after 3384 hours in N
2
. Furthermore, we fabricated a four-terminal perovskite-silicon tandem solar cell and the champion device obtained 27.16% PCE. This work provides an effective way to improve WBG PSCs' performance, facilitating the commercial application of tandem solar cells.
Introducing GuSCN reduces the defect density of perovskites by one order of magnitude. Consequently, an MA-free opaque wide-bandgap perovskite solar cell achieves 20.92% power conversion efficiency with excellent stability. |
doi_str_mv | 10.1039/d4qm00474d |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4QM00474D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101941359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-1c1851d9e5c674d3a958abb5ca072cddd815256304ffab13fe42328397b459413</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKY33gsB74Rq0iRrezk2PwYbIuh1SZOTmtklXdI5hn_ezol6dQ68D-_hPAhdUHJDCStuNV-vCOEZ10dokBKRJlSw7PjfforOY1wSQmiWpYzQAfqcuQ6CkcrKBq-8tsYq2VnvMLjaOoBgXY2NDxhMH1lwHZZO49jJqgG8GCcmAOCt1ZBUfVDLFrcQ_Ed8tx3g6BsZsIKmibja4TpI63CAOvht93aGToxsIpz_zCF6vb97mTwm86eH2WQ8TxTNSJdQRXNBdQFCjfrfmCxELqtKKEmyVGmtcypSMWKEGyMrygzwlKU5K7KKi4JTNkRXh942-PUGYlcu_Sa4_mTJKKF7RBQ9dX2gVPAxBjBlG-xKhl1JSbn3W0758-Lb77SHLw9wiOqX-_PPvgDt33hR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101941359</pqid></control><display><type>article</type><title>Interfacial modification engineering for efficient and stable MA-free wide-bandgap perovskite solar cells by grain regrowth</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Huang, Hao ; Li, Ziyu ; Chen, Zhijia ; Li, Denggao ; Shi, Hongxi ; Zhu, Keqi ; Wang, Chenyu ; Lu, Zhangbo ; Huang, Shihua ; Chi, Dan</creator><creatorcontrib>Huang, Hao ; Li, Ziyu ; Chen, Zhijia ; Li, Denggao ; Shi, Hongxi ; Zhu, Keqi ; Wang, Chenyu ; Lu, Zhangbo ; Huang, Shihua ; Chi, Dan</creatorcontrib><description>Wide bandgap (WBG) perovskites are a key component of perovskite-silicon and all-perovskite tandem solar cells, which provides an effective way to exceed the efficiency limit of single junction solar cells. However, the small perovskite grain size and large defect density of WBG perovskites suppress the further improvement of the device power conversion efficiency (PCE). In this work, we offer a grain regrowth and defect passivation (GRDP) strategy to inhibit the nonradiative recombination loss at the perovskite grain boundary and in bulk simultaneously. Introducing guanidine thiocyanate (GuSCN) by post-treating the perovskite film can address this issue. GuSCN promotes the regrowth of perovskite grains and makes the grain size of perovskites larger than 1700 nm, thus reducing the defect density of perovskite solar cells (PSCs) by one order of magnitude. Consequently, a MA-free opaque WBG PSC achieves 20.92% PCE with excellent stability, maintaining 95.4% of its initial PCE after 3384 hours in N
2
. Furthermore, we fabricated a four-terminal perovskite-silicon tandem solar cell and the champion device obtained 27.16% PCE. This work provides an effective way to improve WBG PSCs' performance, facilitating the commercial application of tandem solar cells.
Introducing GuSCN reduces the defect density of perovskites by one order of magnitude. Consequently, an MA-free opaque wide-bandgap perovskite solar cell achieves 20.92% power conversion efficiency with excellent stability.</description><identifier>ISSN: 2052-1537</identifier><identifier>EISSN: 2052-1537</identifier><identifier>DOI: 10.1039/d4qm00474d</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Bulk density ; Crystal defects ; Energy conversion efficiency ; Energy gap ; Grain boundaries ; Grain size ; Perovskites ; Photovoltaic cells ; Silicon ; Solar cells ; Thiocyanates</subject><ispartof>Materials chemistry frontiers, 2024-09, Vol.8 (18), p.317-327</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-1c1851d9e5c674d3a958abb5ca072cddd815256304ffab13fe42328397b459413</cites><orcidid>0000-0002-1947-2011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Li, Ziyu</creatorcontrib><creatorcontrib>Chen, Zhijia</creatorcontrib><creatorcontrib>Li, Denggao</creatorcontrib><creatorcontrib>Shi, Hongxi</creatorcontrib><creatorcontrib>Zhu, Keqi</creatorcontrib><creatorcontrib>Wang, Chenyu</creatorcontrib><creatorcontrib>Lu, Zhangbo</creatorcontrib><creatorcontrib>Huang, Shihua</creatorcontrib><creatorcontrib>Chi, Dan</creatorcontrib><title>Interfacial modification engineering for efficient and stable MA-free wide-bandgap perovskite solar cells by grain regrowth</title><title>Materials chemistry frontiers</title><description>Wide bandgap (WBG) perovskites are a key component of perovskite-silicon and all-perovskite tandem solar cells, which provides an effective way to exceed the efficiency limit of single junction solar cells. However, the small perovskite grain size and large defect density of WBG perovskites suppress the further improvement of the device power conversion efficiency (PCE). In this work, we offer a grain regrowth and defect passivation (GRDP) strategy to inhibit the nonradiative recombination loss at the perovskite grain boundary and in bulk simultaneously. Introducing guanidine thiocyanate (GuSCN) by post-treating the perovskite film can address this issue. GuSCN promotes the regrowth of perovskite grains and makes the grain size of perovskites larger than 1700 nm, thus reducing the defect density of perovskite solar cells (PSCs) by one order of magnitude. Consequently, a MA-free opaque WBG PSC achieves 20.92% PCE with excellent stability, maintaining 95.4% of its initial PCE after 3384 hours in N
2
. Furthermore, we fabricated a four-terminal perovskite-silicon tandem solar cell and the champion device obtained 27.16% PCE. This work provides an effective way to improve WBG PSCs' performance, facilitating the commercial application of tandem solar cells.
Introducing GuSCN reduces the defect density of perovskites by one order of magnitude. Consequently, an MA-free opaque wide-bandgap perovskite solar cell achieves 20.92% power conversion efficiency with excellent stability.</description><subject>Bulk density</subject><subject>Crystal defects</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Thiocyanates</subject><issn>2052-1537</issn><issn>2052-1537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoOKY33gsB74Rq0iRrezk2PwYbIuh1SZOTmtklXdI5hn_ezol6dQ68D-_hPAhdUHJDCStuNV-vCOEZ10dokBKRJlSw7PjfforOY1wSQmiWpYzQAfqcuQ6CkcrKBq-8tsYq2VnvMLjaOoBgXY2NDxhMH1lwHZZO49jJqgG8GCcmAOCt1ZBUfVDLFrcQ_Ed8tx3g6BsZsIKmibja4TpI63CAOvht93aGToxsIpz_zCF6vb97mTwm86eH2WQ8TxTNSJdQRXNBdQFCjfrfmCxELqtKKEmyVGmtcypSMWKEGyMrygzwlKU5K7KKi4JTNkRXh942-PUGYlcu_Sa4_mTJKKF7RBQ9dX2gVPAxBjBlG-xKhl1JSbn3W0758-Lb77SHLw9wiOqX-_PPvgDt33hR</recordid><startdate>20240909</startdate><enddate>20240909</enddate><creator>Huang, Hao</creator><creator>Li, Ziyu</creator><creator>Chen, Zhijia</creator><creator>Li, Denggao</creator><creator>Shi, Hongxi</creator><creator>Zhu, Keqi</creator><creator>Wang, Chenyu</creator><creator>Lu, Zhangbo</creator><creator>Huang, Shihua</creator><creator>Chi, Dan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1947-2011</orcidid></search><sort><creationdate>20240909</creationdate><title>Interfacial modification engineering for efficient and stable MA-free wide-bandgap perovskite solar cells by grain regrowth</title><author>Huang, Hao ; Li, Ziyu ; Chen, Zhijia ; Li, Denggao ; Shi, Hongxi ; Zhu, Keqi ; Wang, Chenyu ; Lu, Zhangbo ; Huang, Shihua ; Chi, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-1c1851d9e5c674d3a958abb5ca072cddd815256304ffab13fe42328397b459413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bulk density</topic><topic>Crystal defects</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Thiocyanates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Li, Ziyu</creatorcontrib><creatorcontrib>Chen, Zhijia</creatorcontrib><creatorcontrib>Li, Denggao</creatorcontrib><creatorcontrib>Shi, Hongxi</creatorcontrib><creatorcontrib>Zhu, Keqi</creatorcontrib><creatorcontrib>Wang, Chenyu</creatorcontrib><creatorcontrib>Lu, Zhangbo</creatorcontrib><creatorcontrib>Huang, Shihua</creatorcontrib><creatorcontrib>Chi, Dan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hao</au><au>Li, Ziyu</au><au>Chen, Zhijia</au><au>Li, Denggao</au><au>Shi, Hongxi</au><au>Zhu, Keqi</au><au>Wang, Chenyu</au><au>Lu, Zhangbo</au><au>Huang, Shihua</au><au>Chi, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial modification engineering for efficient and stable MA-free wide-bandgap perovskite solar cells by grain regrowth</atitle><jtitle>Materials chemistry frontiers</jtitle><date>2024-09-09</date><risdate>2024</risdate><volume>8</volume><issue>18</issue><spage>317</spage><epage>327</epage><pages>317-327</pages><issn>2052-1537</issn><eissn>2052-1537</eissn><abstract>Wide bandgap (WBG) perovskites are a key component of perovskite-silicon and all-perovskite tandem solar cells, which provides an effective way to exceed the efficiency limit of single junction solar cells. However, the small perovskite grain size and large defect density of WBG perovskites suppress the further improvement of the device power conversion efficiency (PCE). In this work, we offer a grain regrowth and defect passivation (GRDP) strategy to inhibit the nonradiative recombination loss at the perovskite grain boundary and in bulk simultaneously. Introducing guanidine thiocyanate (GuSCN) by post-treating the perovskite film can address this issue. GuSCN promotes the regrowth of perovskite grains and makes the grain size of perovskites larger than 1700 nm, thus reducing the defect density of perovskite solar cells (PSCs) by one order of magnitude. Consequently, a MA-free opaque WBG PSC achieves 20.92% PCE with excellent stability, maintaining 95.4% of its initial PCE after 3384 hours in N
2
. Furthermore, we fabricated a four-terminal perovskite-silicon tandem solar cell and the champion device obtained 27.16% PCE. This work provides an effective way to improve WBG PSCs' performance, facilitating the commercial application of tandem solar cells.
Introducing GuSCN reduces the defect density of perovskites by one order of magnitude. Consequently, an MA-free opaque wide-bandgap perovskite solar cell achieves 20.92% power conversion efficiency with excellent stability.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4qm00474d</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1947-2011</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-1537 |
ispartof | Materials chemistry frontiers, 2024-09, Vol.8 (18), p.317-327 |
issn | 2052-1537 2052-1537 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D4QM00474D |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Bulk density Crystal defects Energy conversion efficiency Energy gap Grain boundaries Grain size Perovskites Photovoltaic cells Silicon Solar cells Thiocyanates |
title | Interfacial modification engineering for efficient and stable MA-free wide-bandgap perovskite solar cells by grain regrowth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20modification%20engineering%20for%20efficient%20and%20stable%20MA-free%20wide-bandgap%20perovskite%20solar%20cells%20by%20grain%20regrowth&rft.jtitle=Materials%20chemistry%20frontiers&rft.au=Huang,%20Hao&rft.date=2024-09-09&rft.volume=8&rft.issue=18&rft.spage=317&rft.epage=327&rft.pages=317-327&rft.issn=2052-1537&rft.eissn=2052-1537&rft_id=info:doi/10.1039/d4qm00474d&rft_dat=%3Cproquest_cross%3E3101941359%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101941359&rft_id=info:pmid/&rfr_iscdi=true |