Interfacial modification engineering for efficient and stable MA-free wide-bandgap perovskite solar cells by grain regrowth

Wide bandgap (WBG) perovskites are a key component of perovskite-silicon and all-perovskite tandem solar cells, which provides an effective way to exceed the efficiency limit of single junction solar cells. However, the small perovskite grain size and large defect density of WBG perovskites suppress...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials chemistry frontiers 2024-09, Vol.8 (18), p.317-327
Hauptverfasser: Huang, Hao, Li, Ziyu, Chen, Zhijia, Li, Denggao, Shi, Hongxi, Zhu, Keqi, Wang, Chenyu, Lu, Zhangbo, Huang, Shihua, Chi, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 327
container_issue 18
container_start_page 317
container_title Materials chemistry frontiers
container_volume 8
creator Huang, Hao
Li, Ziyu
Chen, Zhijia
Li, Denggao
Shi, Hongxi
Zhu, Keqi
Wang, Chenyu
Lu, Zhangbo
Huang, Shihua
Chi, Dan
description Wide bandgap (WBG) perovskites are a key component of perovskite-silicon and all-perovskite tandem solar cells, which provides an effective way to exceed the efficiency limit of single junction solar cells. However, the small perovskite grain size and large defect density of WBG perovskites suppress the further improvement of the device power conversion efficiency (PCE). In this work, we offer a grain regrowth and defect passivation (GRDP) strategy to inhibit the nonradiative recombination loss at the perovskite grain boundary and in bulk simultaneously. Introducing guanidine thiocyanate (GuSCN) by post-treating the perovskite film can address this issue. GuSCN promotes the regrowth of perovskite grains and makes the grain size of perovskites larger than 1700 nm, thus reducing the defect density of perovskite solar cells (PSCs) by one order of magnitude. Consequently, a MA-free opaque WBG PSC achieves 20.92% PCE with excellent stability, maintaining 95.4% of its initial PCE after 3384 hours in N 2 . Furthermore, we fabricated a four-terminal perovskite-silicon tandem solar cell and the champion device obtained 27.16% PCE. This work provides an effective way to improve WBG PSCs' performance, facilitating the commercial application of tandem solar cells. Introducing GuSCN reduces the defect density of perovskites by one order of magnitude. Consequently, an MA-free opaque wide-bandgap perovskite solar cell achieves 20.92% power conversion efficiency with excellent stability.
doi_str_mv 10.1039/d4qm00474d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4QM00474D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101941359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-1c1851d9e5c674d3a958abb5ca072cddd815256304ffab13fe42328397b459413</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKY33gsB74Rq0iRrezk2PwYbIuh1SZOTmtklXdI5hn_ezol6dQ68D-_hPAhdUHJDCStuNV-vCOEZ10dokBKRJlSw7PjfforOY1wSQmiWpYzQAfqcuQ6CkcrKBq-8tsYq2VnvMLjaOoBgXY2NDxhMH1lwHZZO49jJqgG8GCcmAOCt1ZBUfVDLFrcQ_Ed8tx3g6BsZsIKmibja4TpI63CAOvht93aGToxsIpz_zCF6vb97mTwm86eH2WQ8TxTNSJdQRXNBdQFCjfrfmCxELqtKKEmyVGmtcypSMWKEGyMrygzwlKU5K7KKi4JTNkRXh942-PUGYlcu_Sa4_mTJKKF7RBQ9dX2gVPAxBjBlG-xKhl1JSbn3W0758-Lb77SHLw9wiOqX-_PPvgDt33hR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101941359</pqid></control><display><type>article</type><title>Interfacial modification engineering for efficient and stable MA-free wide-bandgap perovskite solar cells by grain regrowth</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Huang, Hao ; Li, Ziyu ; Chen, Zhijia ; Li, Denggao ; Shi, Hongxi ; Zhu, Keqi ; Wang, Chenyu ; Lu, Zhangbo ; Huang, Shihua ; Chi, Dan</creator><creatorcontrib>Huang, Hao ; Li, Ziyu ; Chen, Zhijia ; Li, Denggao ; Shi, Hongxi ; Zhu, Keqi ; Wang, Chenyu ; Lu, Zhangbo ; Huang, Shihua ; Chi, Dan</creatorcontrib><description>Wide bandgap (WBG) perovskites are a key component of perovskite-silicon and all-perovskite tandem solar cells, which provides an effective way to exceed the efficiency limit of single junction solar cells. However, the small perovskite grain size and large defect density of WBG perovskites suppress the further improvement of the device power conversion efficiency (PCE). In this work, we offer a grain regrowth and defect passivation (GRDP) strategy to inhibit the nonradiative recombination loss at the perovskite grain boundary and in bulk simultaneously. Introducing guanidine thiocyanate (GuSCN) by post-treating the perovskite film can address this issue. GuSCN promotes the regrowth of perovskite grains and makes the grain size of perovskites larger than 1700 nm, thus reducing the defect density of perovskite solar cells (PSCs) by one order of magnitude. Consequently, a MA-free opaque WBG PSC achieves 20.92% PCE with excellent stability, maintaining 95.4% of its initial PCE after 3384 hours in N 2 . Furthermore, we fabricated a four-terminal perovskite-silicon tandem solar cell and the champion device obtained 27.16% PCE. This work provides an effective way to improve WBG PSCs' performance, facilitating the commercial application of tandem solar cells. Introducing GuSCN reduces the defect density of perovskites by one order of magnitude. Consequently, an MA-free opaque wide-bandgap perovskite solar cell achieves 20.92% power conversion efficiency with excellent stability.</description><identifier>ISSN: 2052-1537</identifier><identifier>EISSN: 2052-1537</identifier><identifier>DOI: 10.1039/d4qm00474d</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Bulk density ; Crystal defects ; Energy conversion efficiency ; Energy gap ; Grain boundaries ; Grain size ; Perovskites ; Photovoltaic cells ; Silicon ; Solar cells ; Thiocyanates</subject><ispartof>Materials chemistry frontiers, 2024-09, Vol.8 (18), p.317-327</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-1c1851d9e5c674d3a958abb5ca072cddd815256304ffab13fe42328397b459413</cites><orcidid>0000-0002-1947-2011</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Li, Ziyu</creatorcontrib><creatorcontrib>Chen, Zhijia</creatorcontrib><creatorcontrib>Li, Denggao</creatorcontrib><creatorcontrib>Shi, Hongxi</creatorcontrib><creatorcontrib>Zhu, Keqi</creatorcontrib><creatorcontrib>Wang, Chenyu</creatorcontrib><creatorcontrib>Lu, Zhangbo</creatorcontrib><creatorcontrib>Huang, Shihua</creatorcontrib><creatorcontrib>Chi, Dan</creatorcontrib><title>Interfacial modification engineering for efficient and stable MA-free wide-bandgap perovskite solar cells by grain regrowth</title><title>Materials chemistry frontiers</title><description>Wide bandgap (WBG) perovskites are a key component of perovskite-silicon and all-perovskite tandem solar cells, which provides an effective way to exceed the efficiency limit of single junction solar cells. However, the small perovskite grain size and large defect density of WBG perovskites suppress the further improvement of the device power conversion efficiency (PCE). In this work, we offer a grain regrowth and defect passivation (GRDP) strategy to inhibit the nonradiative recombination loss at the perovskite grain boundary and in bulk simultaneously. Introducing guanidine thiocyanate (GuSCN) by post-treating the perovskite film can address this issue. GuSCN promotes the regrowth of perovskite grains and makes the grain size of perovskites larger than 1700 nm, thus reducing the defect density of perovskite solar cells (PSCs) by one order of magnitude. Consequently, a MA-free opaque WBG PSC achieves 20.92% PCE with excellent stability, maintaining 95.4% of its initial PCE after 3384 hours in N 2 . Furthermore, we fabricated a four-terminal perovskite-silicon tandem solar cell and the champion device obtained 27.16% PCE. This work provides an effective way to improve WBG PSCs' performance, facilitating the commercial application of tandem solar cells. Introducing GuSCN reduces the defect density of perovskites by one order of magnitude. Consequently, an MA-free opaque wide-bandgap perovskite solar cell achieves 20.92% power conversion efficiency with excellent stability.</description><subject>Bulk density</subject><subject>Crystal defects</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Thiocyanates</subject><issn>2052-1537</issn><issn>2052-1537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoOKY33gsB74Rq0iRrezk2PwYbIuh1SZOTmtklXdI5hn_ezol6dQ68D-_hPAhdUHJDCStuNV-vCOEZ10dokBKRJlSw7PjfforOY1wSQmiWpYzQAfqcuQ6CkcrKBq-8tsYq2VnvMLjaOoBgXY2NDxhMH1lwHZZO49jJqgG8GCcmAOCt1ZBUfVDLFrcQ_Ed8tx3g6BsZsIKmibja4TpI63CAOvht93aGToxsIpz_zCF6vb97mTwm86eH2WQ8TxTNSJdQRXNBdQFCjfrfmCxELqtKKEmyVGmtcypSMWKEGyMrygzwlKU5K7KKi4JTNkRXh942-PUGYlcu_Sa4_mTJKKF7RBQ9dX2gVPAxBjBlG-xKhl1JSbn3W0758-Lb77SHLw9wiOqX-_PPvgDt33hR</recordid><startdate>20240909</startdate><enddate>20240909</enddate><creator>Huang, Hao</creator><creator>Li, Ziyu</creator><creator>Chen, Zhijia</creator><creator>Li, Denggao</creator><creator>Shi, Hongxi</creator><creator>Zhu, Keqi</creator><creator>Wang, Chenyu</creator><creator>Lu, Zhangbo</creator><creator>Huang, Shihua</creator><creator>Chi, Dan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1947-2011</orcidid></search><sort><creationdate>20240909</creationdate><title>Interfacial modification engineering for efficient and stable MA-free wide-bandgap perovskite solar cells by grain regrowth</title><author>Huang, Hao ; Li, Ziyu ; Chen, Zhijia ; Li, Denggao ; Shi, Hongxi ; Zhu, Keqi ; Wang, Chenyu ; Lu, Zhangbo ; Huang, Shihua ; Chi, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-1c1851d9e5c674d3a958abb5ca072cddd815256304ffab13fe42328397b459413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bulk density</topic><topic>Crystal defects</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Thiocyanates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Li, Ziyu</creatorcontrib><creatorcontrib>Chen, Zhijia</creatorcontrib><creatorcontrib>Li, Denggao</creatorcontrib><creatorcontrib>Shi, Hongxi</creatorcontrib><creatorcontrib>Zhu, Keqi</creatorcontrib><creatorcontrib>Wang, Chenyu</creatorcontrib><creatorcontrib>Lu, Zhangbo</creatorcontrib><creatorcontrib>Huang, Shihua</creatorcontrib><creatorcontrib>Chi, Dan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hao</au><au>Li, Ziyu</au><au>Chen, Zhijia</au><au>Li, Denggao</au><au>Shi, Hongxi</au><au>Zhu, Keqi</au><au>Wang, Chenyu</au><au>Lu, Zhangbo</au><au>Huang, Shihua</au><au>Chi, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial modification engineering for efficient and stable MA-free wide-bandgap perovskite solar cells by grain regrowth</atitle><jtitle>Materials chemistry frontiers</jtitle><date>2024-09-09</date><risdate>2024</risdate><volume>8</volume><issue>18</issue><spage>317</spage><epage>327</epage><pages>317-327</pages><issn>2052-1537</issn><eissn>2052-1537</eissn><abstract>Wide bandgap (WBG) perovskites are a key component of perovskite-silicon and all-perovskite tandem solar cells, which provides an effective way to exceed the efficiency limit of single junction solar cells. However, the small perovskite grain size and large defect density of WBG perovskites suppress the further improvement of the device power conversion efficiency (PCE). In this work, we offer a grain regrowth and defect passivation (GRDP) strategy to inhibit the nonradiative recombination loss at the perovskite grain boundary and in bulk simultaneously. Introducing guanidine thiocyanate (GuSCN) by post-treating the perovskite film can address this issue. GuSCN promotes the regrowth of perovskite grains and makes the grain size of perovskites larger than 1700 nm, thus reducing the defect density of perovskite solar cells (PSCs) by one order of magnitude. Consequently, a MA-free opaque WBG PSC achieves 20.92% PCE with excellent stability, maintaining 95.4% of its initial PCE after 3384 hours in N 2 . Furthermore, we fabricated a four-terminal perovskite-silicon tandem solar cell and the champion device obtained 27.16% PCE. This work provides an effective way to improve WBG PSCs' performance, facilitating the commercial application of tandem solar cells. Introducing GuSCN reduces the defect density of perovskites by one order of magnitude. Consequently, an MA-free opaque wide-bandgap perovskite solar cell achieves 20.92% power conversion efficiency with excellent stability.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4qm00474d</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1947-2011</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2052-1537
ispartof Materials chemistry frontiers, 2024-09, Vol.8 (18), p.317-327
issn 2052-1537
2052-1537
language eng
recordid cdi_crossref_primary_10_1039_D4QM00474D
source Royal Society Of Chemistry Journals 2008-
subjects Bulk density
Crystal defects
Energy conversion efficiency
Energy gap
Grain boundaries
Grain size
Perovskites
Photovoltaic cells
Silicon
Solar cells
Thiocyanates
title Interfacial modification engineering for efficient and stable MA-free wide-bandgap perovskite solar cells by grain regrowth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20modification%20engineering%20for%20efficient%20and%20stable%20MA-free%20wide-bandgap%20perovskite%20solar%20cells%20by%20grain%20regrowth&rft.jtitle=Materials%20chemistry%20frontiers&rft.au=Huang,%20Hao&rft.date=2024-09-09&rft.volume=8&rft.issue=18&rft.spage=317&rft.epage=327&rft.pages=317-327&rft.issn=2052-1537&rft.eissn=2052-1537&rft_id=info:doi/10.1039/d4qm00474d&rft_dat=%3Cproquest_cross%3E3101941359%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101941359&rft_id=info:pmid/&rfr_iscdi=true