Label free, machine learning informed plasma-based elemental biomarkers of Alzheimer's disease

Using inductively coupled plasma mass spectrometry (ICP-MS), we have measured the elemental concentrations of Na, Fe, Cu, P, Mg, Zn, K in plasma samples of 25 Alzheimer's disease (AD) patients and 34 healthy individuals. Given the multidimensional nature of the ICP-MS data, we used support vect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of analytical atomic spectrometry 2024-07, Vol.39 (8), p.1961-197
Hauptverfasser: Safi, Ali, Melikechi, Noureddine, Eseller, Kemal Efe, Gaschnig, Richard M, Xia, Weiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 197
container_issue 8
container_start_page 1961
container_title Journal of analytical atomic spectrometry
container_volume 39
creator Safi, Ali
Melikechi, Noureddine
Eseller, Kemal Efe
Gaschnig, Richard M
Xia, Weiming
description Using inductively coupled plasma mass spectrometry (ICP-MS), we have measured the elemental concentrations of Na, Fe, Cu, P, Mg, Zn, K in plasma samples of 25 Alzheimer's disease (AD) patients and 34 healthy individuals. Given the multidimensional nature of the ICP-MS data, we used support vector machines and logistic regression to illustrate the elemental distribution of each donor and seek key features that may differentiate plasma samples of AD patients from those of healthy individuals. We found that ratios of the elemental concentrations of Na over K, Fe over Na, and P over Zn yield specificity, sensitivity, and accuracy of 79%, 84% and 81% respectively. This information was then used to seek from the mass spectrometric data a differentiation of the plasma samples from AD and healthy donors. Plotted as a function of the Na/K, Fe/Na, and P/Zn, the ICP-MS data reveals a linear delineation between the two groups of samples yielding to the correct classification 21 of 25 AD and 28 of 34 HC plasma samples. These findings highlight the importance of elemental ratios present in plasma and suggest that the ratios of the elemental concentrations of blood metals may be considered as biomarkers that can distinguish plasma samples of AD patients from healthy subjects. Machine learning analysis of ICP-MS data identifies elemental ratios that differentiates with great accuracy blood plasma of Alzheimer's patients and healthy donors.
doi_str_mv 10.1039/d4ja00090k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4JA00090K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086269854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-4f037d5a92b35a5469e38dadf9ed82e8b6026167974c55d0d6008f83d25af2113</originalsourceid><addsrcrecordid>eNpF0ElLAzEUB_AgCtbqxbsQ8CCIo9knOZa6W_CiV4fM5MWmzlKT9qCf3mhFT48HP97yR-iQknNKuLlwYmEJIYa8baER5UoUUgqxjUaEqbIwoix30V5Ki2yEZHKEXma2hhb7CHCGO9vMQw-4BRv70L_i0PshduDwsrWps0VtU26ghQ76lW1xHYbOxjeICQ8eT9rPOYQO4knCLiTIeB_teNsmOPitY_R8ffU0vS1mjzd308msaGhJVoXwhJdOWsNqLq0UygDXzjpvwGkGulb5fqpKU4pGSkecIkR7zR2T1jNK-Rgdb-Yu4_C-hrSqFsM69nllxYlWTBktRVanG9XEIaUIvlrGkB_4qCipvvOrLsX95Ce_h4yPNjim5s_958u_ABfObC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086269854</pqid></control><display><type>article</type><title>Label free, machine learning informed plasma-based elemental biomarkers of Alzheimer's disease</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Safi, Ali ; Melikechi, Noureddine ; Eseller, Kemal Efe ; Gaschnig, Richard M ; Xia, Weiming</creator><creatorcontrib>Safi, Ali ; Melikechi, Noureddine ; Eseller, Kemal Efe ; Gaschnig, Richard M ; Xia, Weiming</creatorcontrib><description>Using inductively coupled plasma mass spectrometry (ICP-MS), we have measured the elemental concentrations of Na, Fe, Cu, P, Mg, Zn, K in plasma samples of 25 Alzheimer's disease (AD) patients and 34 healthy individuals. Given the multidimensional nature of the ICP-MS data, we used support vector machines and logistic regression to illustrate the elemental distribution of each donor and seek key features that may differentiate plasma samples of AD patients from those of healthy individuals. We found that ratios of the elemental concentrations of Na over K, Fe over Na, and P over Zn yield specificity, sensitivity, and accuracy of 79%, 84% and 81% respectively. This information was then used to seek from the mass spectrometric data a differentiation of the plasma samples from AD and healthy donors. Plotted as a function of the Na/K, Fe/Na, and P/Zn, the ICP-MS data reveals a linear delineation between the two groups of samples yielding to the correct classification 21 of 25 AD and 28 of 34 HC plasma samples. These findings highlight the importance of elemental ratios present in plasma and suggest that the ratios of the elemental concentrations of blood metals may be considered as biomarkers that can distinguish plasma samples of AD patients from healthy subjects. Machine learning analysis of ICP-MS data identifies elemental ratios that differentiates with great accuracy blood plasma of Alzheimer's patients and healthy donors.</description><identifier>ISSN: 0267-9477</identifier><identifier>EISSN: 1364-5544</identifier><identifier>DOI: 10.1039/d4ja00090k</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Alzheimer's disease ; Biomarkers ; Inductively coupled plasma mass spectrometry ; Iron ; Machine learning ; Mass spectrometry ; Plasma ; Support vector machines ; Zinc</subject><ispartof>Journal of analytical atomic spectrometry, 2024-07, Vol.39 (8), p.1961-197</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-4f037d5a92b35a5469e38dadf9ed82e8b6026167974c55d0d6008f83d25af2113</cites><orcidid>0000-0001-5392-9225 ; 0000-0001-6788-1541 ; 0000-0002-9758-4852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Safi, Ali</creatorcontrib><creatorcontrib>Melikechi, Noureddine</creatorcontrib><creatorcontrib>Eseller, Kemal Efe</creatorcontrib><creatorcontrib>Gaschnig, Richard M</creatorcontrib><creatorcontrib>Xia, Weiming</creatorcontrib><title>Label free, machine learning informed plasma-based elemental biomarkers of Alzheimer's disease</title><title>Journal of analytical atomic spectrometry</title><description>Using inductively coupled plasma mass spectrometry (ICP-MS), we have measured the elemental concentrations of Na, Fe, Cu, P, Mg, Zn, K in plasma samples of 25 Alzheimer's disease (AD) patients and 34 healthy individuals. Given the multidimensional nature of the ICP-MS data, we used support vector machines and logistic regression to illustrate the elemental distribution of each donor and seek key features that may differentiate plasma samples of AD patients from those of healthy individuals. We found that ratios of the elemental concentrations of Na over K, Fe over Na, and P over Zn yield specificity, sensitivity, and accuracy of 79%, 84% and 81% respectively. This information was then used to seek from the mass spectrometric data a differentiation of the plasma samples from AD and healthy donors. Plotted as a function of the Na/K, Fe/Na, and P/Zn, the ICP-MS data reveals a linear delineation between the two groups of samples yielding to the correct classification 21 of 25 AD and 28 of 34 HC plasma samples. These findings highlight the importance of elemental ratios present in plasma and suggest that the ratios of the elemental concentrations of blood metals may be considered as biomarkers that can distinguish plasma samples of AD patients from healthy subjects. Machine learning analysis of ICP-MS data identifies elemental ratios that differentiates with great accuracy blood plasma of Alzheimer's patients and healthy donors.</description><subject>Alzheimer's disease</subject><subject>Biomarkers</subject><subject>Inductively coupled plasma mass spectrometry</subject><subject>Iron</subject><subject>Machine learning</subject><subject>Mass spectrometry</subject><subject>Plasma</subject><subject>Support vector machines</subject><subject>Zinc</subject><issn>0267-9477</issn><issn>1364-5544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpF0ElLAzEUB_AgCtbqxbsQ8CCIo9knOZa6W_CiV4fM5MWmzlKT9qCf3mhFT48HP97yR-iQknNKuLlwYmEJIYa8baER5UoUUgqxjUaEqbIwoix30V5Ki2yEZHKEXma2hhb7CHCGO9vMQw-4BRv70L_i0PshduDwsrWps0VtU26ghQ76lW1xHYbOxjeICQ8eT9rPOYQO4knCLiTIeB_teNsmOPitY_R8ffU0vS1mjzd308msaGhJVoXwhJdOWsNqLq0UygDXzjpvwGkGulb5fqpKU4pGSkecIkR7zR2T1jNK-Rgdb-Yu4_C-hrSqFsM69nllxYlWTBktRVanG9XEIaUIvlrGkB_4qCipvvOrLsX95Ce_h4yPNjim5s_958u_ABfObC4</recordid><startdate>20240731</startdate><enddate>20240731</enddate><creator>Safi, Ali</creator><creator>Melikechi, Noureddine</creator><creator>Eseller, Kemal Efe</creator><creator>Gaschnig, Richard M</creator><creator>Xia, Weiming</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5392-9225</orcidid><orcidid>https://orcid.org/0000-0001-6788-1541</orcidid><orcidid>https://orcid.org/0000-0002-9758-4852</orcidid></search><sort><creationdate>20240731</creationdate><title>Label free, machine learning informed plasma-based elemental biomarkers of Alzheimer's disease</title><author>Safi, Ali ; Melikechi, Noureddine ; Eseller, Kemal Efe ; Gaschnig, Richard M ; Xia, Weiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-4f037d5a92b35a5469e38dadf9ed82e8b6026167974c55d0d6008f83d25af2113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alzheimer's disease</topic><topic>Biomarkers</topic><topic>Inductively coupled plasma mass spectrometry</topic><topic>Iron</topic><topic>Machine learning</topic><topic>Mass spectrometry</topic><topic>Plasma</topic><topic>Support vector machines</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safi, Ali</creatorcontrib><creatorcontrib>Melikechi, Noureddine</creatorcontrib><creatorcontrib>Eseller, Kemal Efe</creatorcontrib><creatorcontrib>Gaschnig, Richard M</creatorcontrib><creatorcontrib>Xia, Weiming</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of analytical atomic spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safi, Ali</au><au>Melikechi, Noureddine</au><au>Eseller, Kemal Efe</au><au>Gaschnig, Richard M</au><au>Xia, Weiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Label free, machine learning informed plasma-based elemental biomarkers of Alzheimer's disease</atitle><jtitle>Journal of analytical atomic spectrometry</jtitle><date>2024-07-31</date><risdate>2024</risdate><volume>39</volume><issue>8</issue><spage>1961</spage><epage>197</epage><pages>1961-197</pages><issn>0267-9477</issn><eissn>1364-5544</eissn><abstract>Using inductively coupled plasma mass spectrometry (ICP-MS), we have measured the elemental concentrations of Na, Fe, Cu, P, Mg, Zn, K in plasma samples of 25 Alzheimer's disease (AD) patients and 34 healthy individuals. Given the multidimensional nature of the ICP-MS data, we used support vector machines and logistic regression to illustrate the elemental distribution of each donor and seek key features that may differentiate plasma samples of AD patients from those of healthy individuals. We found that ratios of the elemental concentrations of Na over K, Fe over Na, and P over Zn yield specificity, sensitivity, and accuracy of 79%, 84% and 81% respectively. This information was then used to seek from the mass spectrometric data a differentiation of the plasma samples from AD and healthy donors. Plotted as a function of the Na/K, Fe/Na, and P/Zn, the ICP-MS data reveals a linear delineation between the two groups of samples yielding to the correct classification 21 of 25 AD and 28 of 34 HC plasma samples. These findings highlight the importance of elemental ratios present in plasma and suggest that the ratios of the elemental concentrations of blood metals may be considered as biomarkers that can distinguish plasma samples of AD patients from healthy subjects. Machine learning analysis of ICP-MS data identifies elemental ratios that differentiates with great accuracy blood plasma of Alzheimer's patients and healthy donors.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ja00090k</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5392-9225</orcidid><orcidid>https://orcid.org/0000-0001-6788-1541</orcidid><orcidid>https://orcid.org/0000-0002-9758-4852</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0267-9477
ispartof Journal of analytical atomic spectrometry, 2024-07, Vol.39 (8), p.1961-197
issn 0267-9477
1364-5544
language eng
recordid cdi_crossref_primary_10_1039_D4JA00090K
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Alzheimer's disease
Biomarkers
Inductively coupled plasma mass spectrometry
Iron
Machine learning
Mass spectrometry
Plasma
Support vector machines
Zinc
title Label free, machine learning informed plasma-based elemental biomarkers of Alzheimer's disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Label%20free,%20machine%20learning%20informed%20plasma-based%20elemental%20biomarkers%20of%20Alzheimer's%20disease&rft.jtitle=Journal%20of%20analytical%20atomic%20spectrometry&rft.au=Safi,%20Ali&rft.date=2024-07-31&rft.volume=39&rft.issue=8&rft.spage=1961&rft.epage=197&rft.pages=1961-197&rft.issn=0267-9477&rft.eissn=1364-5544&rft_id=info:doi/10.1039/d4ja00090k&rft_dat=%3Cproquest_cross%3E3086269854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086269854&rft_id=info:pmid/&rfr_iscdi=true