Decoupling first-cycle capacity loss mechanisms in sulfide solid-state batteries

Solid-state batteries (SSBs) promise more energy-dense storage than liquid electrolyte lithium-ion batteries (LIBs). However, first-cycle capacity loss is higher in SSBs than in LIBs due to interfacial reactions. The chemical evolution of key interfaces in SSBs has been extensively characterized. El...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2025-01
Hauptverfasser: Kaeli, Emma, Jiang, Zhelong, Yang, Xiaomian, Choy, Emma P. K. L., Liang, Nicolas B., Barks, Edward, Wang, Sunny, Kang, Stephen Dongmin, Chueh, William C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Energy & environmental science
container_volume
creator Kaeli, Emma
Jiang, Zhelong
Yang, Xiaomian
Choy, Emma P. K. L.
Liang, Nicolas B.
Barks, Edward
Wang, Sunny
Kang, Stephen Dongmin
Chueh, William C.
description Solid-state batteries (SSBs) promise more energy-dense storage than liquid electrolyte lithium-ion batteries (LIBs). However, first-cycle capacity loss is higher in SSBs than in LIBs due to interfacial reactions. The chemical evolution of key interfaces in SSBs has been extensively characterized. Electrochemically, however, we lack a versatile strategy for quantifying the reversibility of solid electrolyte (SE) redox for established and next-generation SSB electrolytes. In this work, we perform tailored electrochemical tests and operando X-ray diffraction to disentangle reversible and irreversible sources of capacity loss in positive electrodes composed of Li 6 PS 5 Cl SE, Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 (NMC), and carbon conductive additives. We leverage an atypically low voltage cutoff (2.0 V vs. Li/Li + ) to quantify the reversibility of SE redox. Using slow (5.5 mA g NMC −1 ) cycling paired with >100 h low-voltage holds, our cells achieve a surprising 96.2% first-cycle coulombic efficiency, which is higher than previously reported (mean: 72%, maximum: 91.6% across surveyed literature). We clarify that sluggish NMC relithiation kinetics have been historically mistaken for permanently irreversible capacity loss. Through systematic decoupling of loss mechanisms, we uncover the unexpected reversibility of SE redox and isolate the major contributors to capacity loss, outlining a strategy for accurate assessment of next-generation SE materials and interface modifications.
doi_str_mv 10.1039/D4EE04908J
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4EE04908J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D4EE04908J</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-cdf845fecdc91be995690eae65a23c6dc547dda97a87aba799c9cc8aa6bedda53</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhC0EEqVw4QksjkgBJ3Hs-Ija8qdKcIBztFlvwChNqqx76NtjVBCnHa1GO9-OEJe5uslV6W6XerVS2qn6-UjMclvprLLKHP9p44pTccb8pZQplHUz8bokHHfbPgwfsgsTxwz32JNE2AKGuJf9yCw3hJ8wBN6wDIPkXd8FT5LHPviMI0SSLcRIUyA-Fycd9EwXv3Mu3u9Xb4vHbP3y8LS4W2eYa5tSfFfrqiP06PKWnEtsioBMBUWJxmOlrffgLNQWWrDOoUOsAUxLaV-Vc3F1uDtyDA0n1sSI4zAQxqbQzti6TKbrgwmn9MZEXbOdwgamfZOr5qew5r-w8hsDgGAu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Decoupling first-cycle capacity loss mechanisms in sulfide solid-state batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kaeli, Emma ; Jiang, Zhelong ; Yang, Xiaomian ; Choy, Emma P. K. L. ; Liang, Nicolas B. ; Barks, Edward ; Wang, Sunny ; Kang, Stephen Dongmin ; Chueh, William C.</creator><creatorcontrib>Kaeli, Emma ; Jiang, Zhelong ; Yang, Xiaomian ; Choy, Emma P. K. L. ; Liang, Nicolas B. ; Barks, Edward ; Wang, Sunny ; Kang, Stephen Dongmin ; Chueh, William C.</creatorcontrib><description>Solid-state batteries (SSBs) promise more energy-dense storage than liquid electrolyte lithium-ion batteries (LIBs). However, first-cycle capacity loss is higher in SSBs than in LIBs due to interfacial reactions. The chemical evolution of key interfaces in SSBs has been extensively characterized. Electrochemically, however, we lack a versatile strategy for quantifying the reversibility of solid electrolyte (SE) redox for established and next-generation SSB electrolytes. In this work, we perform tailored electrochemical tests and operando X-ray diffraction to disentangle reversible and irreversible sources of capacity loss in positive electrodes composed of Li 6 PS 5 Cl SE, Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 (NMC), and carbon conductive additives. We leverage an atypically low voltage cutoff (2.0 V vs. Li/Li + ) to quantify the reversibility of SE redox. Using slow (5.5 mA g NMC −1 ) cycling paired with &gt;100 h low-voltage holds, our cells achieve a surprising 96.2% first-cycle coulombic efficiency, which is higher than previously reported (mean: 72%, maximum: 91.6% across surveyed literature). We clarify that sluggish NMC relithiation kinetics have been historically mistaken for permanently irreversible capacity loss. Through systematic decoupling of loss mechanisms, we uncover the unexpected reversibility of SE redox and isolate the major contributors to capacity loss, outlining a strategy for accurate assessment of next-generation SE materials and interface modifications.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/D4EE04908J</identifier><language>eng</language><publisher>United Kingdom: Royal Society of Chemistry (RSC)</publisher><ispartof>Energy &amp; environmental science, 2025-01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-cdf845fecdc91be995690eae65a23c6dc547dda97a87aba799c9cc8aa6bedda53</cites><orcidid>0000-0002-3927-2922 ; 0000-0002-7491-7933 ; 0000-0003-0013-0860 ; 0000-0001-8166-6362 ; 0000000300130860 ; 0000000239272922 ; 0000000181666362 ; 0000000274917933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2496783$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaeli, Emma</creatorcontrib><creatorcontrib>Jiang, Zhelong</creatorcontrib><creatorcontrib>Yang, Xiaomian</creatorcontrib><creatorcontrib>Choy, Emma P. K. L.</creatorcontrib><creatorcontrib>Liang, Nicolas B.</creatorcontrib><creatorcontrib>Barks, Edward</creatorcontrib><creatorcontrib>Wang, Sunny</creatorcontrib><creatorcontrib>Kang, Stephen Dongmin</creatorcontrib><creatorcontrib>Chueh, William C.</creatorcontrib><title>Decoupling first-cycle capacity loss mechanisms in sulfide solid-state batteries</title><title>Energy &amp; environmental science</title><description>Solid-state batteries (SSBs) promise more energy-dense storage than liquid electrolyte lithium-ion batteries (LIBs). However, first-cycle capacity loss is higher in SSBs than in LIBs due to interfacial reactions. The chemical evolution of key interfaces in SSBs has been extensively characterized. Electrochemically, however, we lack a versatile strategy for quantifying the reversibility of solid electrolyte (SE) redox for established and next-generation SSB electrolytes. In this work, we perform tailored electrochemical tests and operando X-ray diffraction to disentangle reversible and irreversible sources of capacity loss in positive electrodes composed of Li 6 PS 5 Cl SE, Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 (NMC), and carbon conductive additives. We leverage an atypically low voltage cutoff (2.0 V vs. Li/Li + ) to quantify the reversibility of SE redox. Using slow (5.5 mA g NMC −1 ) cycling paired with &gt;100 h low-voltage holds, our cells achieve a surprising 96.2% first-cycle coulombic efficiency, which is higher than previously reported (mean: 72%, maximum: 91.6% across surveyed literature). We clarify that sluggish NMC relithiation kinetics have been historically mistaken for permanently irreversible capacity loss. Through systematic decoupling of loss mechanisms, we uncover the unexpected reversibility of SE redox and isolate the major contributors to capacity loss, outlining a strategy for accurate assessment of next-generation SE materials and interface modifications.</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpFkM1OwzAQhC0EEqVw4QksjkgBJ3Hs-Ija8qdKcIBztFlvwChNqqx76NtjVBCnHa1GO9-OEJe5uslV6W6XerVS2qn6-UjMclvprLLKHP9p44pTccb8pZQplHUz8bokHHfbPgwfsgsTxwz32JNE2AKGuJf9yCw3hJ8wBN6wDIPkXd8FT5LHPviMI0SSLcRIUyA-Fycd9EwXv3Mu3u9Xb4vHbP3y8LS4W2eYa5tSfFfrqiP06PKWnEtsioBMBUWJxmOlrffgLNQWWrDOoUOsAUxLaV-Vc3F1uDtyDA0n1sSI4zAQxqbQzti6TKbrgwmn9MZEXbOdwgamfZOr5qew5r-w8hsDgGAu</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Kaeli, Emma</creator><creator>Jiang, Zhelong</creator><creator>Yang, Xiaomian</creator><creator>Choy, Emma P. K. L.</creator><creator>Liang, Nicolas B.</creator><creator>Barks, Edward</creator><creator>Wang, Sunny</creator><creator>Kang, Stephen Dongmin</creator><creator>Chueh, William C.</creator><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3927-2922</orcidid><orcidid>https://orcid.org/0000-0002-7491-7933</orcidid><orcidid>https://orcid.org/0000-0003-0013-0860</orcidid><orcidid>https://orcid.org/0000-0001-8166-6362</orcidid><orcidid>https://orcid.org/0000000300130860</orcidid><orcidid>https://orcid.org/0000000239272922</orcidid><orcidid>https://orcid.org/0000000181666362</orcidid><orcidid>https://orcid.org/0000000274917933</orcidid></search><sort><creationdate>20250101</creationdate><title>Decoupling first-cycle capacity loss mechanisms in sulfide solid-state batteries</title><author>Kaeli, Emma ; Jiang, Zhelong ; Yang, Xiaomian ; Choy, Emma P. K. L. ; Liang, Nicolas B. ; Barks, Edward ; Wang, Sunny ; Kang, Stephen Dongmin ; Chueh, William C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-cdf845fecdc91be995690eae65a23c6dc547dda97a87aba799c9cc8aa6bedda53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaeli, Emma</creatorcontrib><creatorcontrib>Jiang, Zhelong</creatorcontrib><creatorcontrib>Yang, Xiaomian</creatorcontrib><creatorcontrib>Choy, Emma P. K. L.</creatorcontrib><creatorcontrib>Liang, Nicolas B.</creatorcontrib><creatorcontrib>Barks, Edward</creatorcontrib><creatorcontrib>Wang, Sunny</creatorcontrib><creatorcontrib>Kang, Stephen Dongmin</creatorcontrib><creatorcontrib>Chueh, William C.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaeli, Emma</au><au>Jiang, Zhelong</au><au>Yang, Xiaomian</au><au>Choy, Emma P. K. L.</au><au>Liang, Nicolas B.</au><au>Barks, Edward</au><au>Wang, Sunny</au><au>Kang, Stephen Dongmin</au><au>Chueh, William C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoupling first-cycle capacity loss mechanisms in sulfide solid-state batteries</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2025-01-01</date><risdate>2025</risdate><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Solid-state batteries (SSBs) promise more energy-dense storage than liquid electrolyte lithium-ion batteries (LIBs). However, first-cycle capacity loss is higher in SSBs than in LIBs due to interfacial reactions. The chemical evolution of key interfaces in SSBs has been extensively characterized. Electrochemically, however, we lack a versatile strategy for quantifying the reversibility of solid electrolyte (SE) redox for established and next-generation SSB electrolytes. In this work, we perform tailored electrochemical tests and operando X-ray diffraction to disentangle reversible and irreversible sources of capacity loss in positive electrodes composed of Li 6 PS 5 Cl SE, Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 (NMC), and carbon conductive additives. We leverage an atypically low voltage cutoff (2.0 V vs. Li/Li + ) to quantify the reversibility of SE redox. Using slow (5.5 mA g NMC −1 ) cycling paired with &gt;100 h low-voltage holds, our cells achieve a surprising 96.2% first-cycle coulombic efficiency, which is higher than previously reported (mean: 72%, maximum: 91.6% across surveyed literature). We clarify that sluggish NMC relithiation kinetics have been historically mistaken for permanently irreversible capacity loss. Through systematic decoupling of loss mechanisms, we uncover the unexpected reversibility of SE redox and isolate the major contributors to capacity loss, outlining a strategy for accurate assessment of next-generation SE materials and interface modifications.</abstract><cop>United Kingdom</cop><pub>Royal Society of Chemistry (RSC)</pub><doi>10.1039/D4EE04908J</doi><orcidid>https://orcid.org/0000-0002-3927-2922</orcidid><orcidid>https://orcid.org/0000-0002-7491-7933</orcidid><orcidid>https://orcid.org/0000-0003-0013-0860</orcidid><orcidid>https://orcid.org/0000-0001-8166-6362</orcidid><orcidid>https://orcid.org/0000000300130860</orcidid><orcidid>https://orcid.org/0000000239272922</orcidid><orcidid>https://orcid.org/0000000181666362</orcidid><orcidid>https://orcid.org/0000000274917933</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2025-01
issn 1754-5692
1754-5706
language eng
recordid cdi_crossref_primary_10_1039_D4EE04908J
source Royal Society Of Chemistry Journals 2008-
title Decoupling first-cycle capacity loss mechanisms in sulfide solid-state batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoupling%20first-cycle%20capacity%20loss%20mechanisms%20in%20sulfide%20solid-state%20batteries&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Kaeli,%20Emma&rft.date=2025-01-01&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/D4EE04908J&rft_dat=%3Ccrossref_osti_%3E10_1039_D4EE04908J%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true