Electric effects reinforce charge carrier behaviour for photocatalysis

Photocatalysis is a highly efficient method for the conversion of solar energy and has shown great promise in mitigating the growing energy crisis and environmental pollution. However, achieving the desired solar energy conversion efficiency, which is directly limited by complex photoelectronic proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2024-07, Vol.17 (14), p.497-4928
Hauptverfasser: Shu, Aoqiang, Qin, Chencheng, Li, Miao, Zhao, Luna, Shangguan, Zichen, Shu, Zihan, Yuan, Xingzhong, Zhu, Mingshan, Wu, Yan, Wang, Hou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4928
container_issue 14
container_start_page 497
container_title Energy & environmental science
container_volume 17
creator Shu, Aoqiang
Qin, Chencheng
Li, Miao
Zhao, Luna
Shangguan, Zichen
Shu, Zihan
Yuan, Xingzhong
Zhu, Mingshan
Wu, Yan
Wang, Hou
description Photocatalysis is a highly efficient method for the conversion of solar energy and has shown great promise in mitigating the growing energy crisis and environmental pollution. However, achieving the desired solar energy conversion efficiency, which is directly limited by complex photoelectronic processes in the generation, transport, dissociation and recombination of charge carriers, is still a great challenge. These behaviors of charge carriers are considered to be dominated by electric effects. In this review, recent advances in the utilization of electric effects ( e.g. , piezoelectric effect, magnetoresistance effect, and excitonic effect) of charge carriers are discussed in relation to applications in photocatalytic processes. The mechanism of exciton dissociation in photocatalytic processes, the role of a built-in piezoelectric field, and negative magnetoresistance in promoting photoinduced charge transfer and separation are emphasized. This review provides insights into the potential challenges associated with leveraging the electric effects of carriers to reinforce photocatalysis. Recent studies on enhancing charge carrier behavior through electric effects for efficient photocatalysis are summarized, evaluating the in-depth function of these effects. This provides unique perspectives to optimize photocatalytic processes.
doi_str_mv 10.1039/d4ee01379d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4EE01379D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081174964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-b89c769c93aae3990109712d0cdd56074baf16c92f89f094a65983a887638c723</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKsX78KCN2F1sskmmaO0WxUKXvS8ZLOJ3VK7dbIV-u8brR-n94V5mBkexi453HIQeNdK74ELje0RG3FdyrzUoI5_u8LilJ3FuARQBWgcsVm18m6gzmU-hNRiRr5bh56cz9zC0lsKS9R5yhq_sJ9dv6UsjbPNoh96Zwe72sUunrOTYFfRX_zkmL3OqpfJYz5_fnia3M9zxzUMeWPQaYUOhbVeIAIH1LxowbVtqUDLxgauHBbBYACUVpVohDVGK2GcLsSYXR_2bqj_2Po41Mv00DqdrAUYzrVEJRN1c6Ac9TGSD_WGundLu5pD_eWpnsqq-vY0TfDVAabo_rh_j2IPVnxj9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081174964</pqid></control><display><type>article</type><title>Electric effects reinforce charge carrier behaviour for photocatalysis</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Shu, Aoqiang ; Qin, Chencheng ; Li, Miao ; Zhao, Luna ; Shangguan, Zichen ; Shu, Zihan ; Yuan, Xingzhong ; Zhu, Mingshan ; Wu, Yan ; Wang, Hou</creator><creatorcontrib>Shu, Aoqiang ; Qin, Chencheng ; Li, Miao ; Zhao, Luna ; Shangguan, Zichen ; Shu, Zihan ; Yuan, Xingzhong ; Zhu, Mingshan ; Wu, Yan ; Wang, Hou</creatorcontrib><description>Photocatalysis is a highly efficient method for the conversion of solar energy and has shown great promise in mitigating the growing energy crisis and environmental pollution. However, achieving the desired solar energy conversion efficiency, which is directly limited by complex photoelectronic processes in the generation, transport, dissociation and recombination of charge carriers, is still a great challenge. These behaviors of charge carriers are considered to be dominated by electric effects. In this review, recent advances in the utilization of electric effects ( e.g. , piezoelectric effect, magnetoresistance effect, and excitonic effect) of charge carriers are discussed in relation to applications in photocatalytic processes. The mechanism of exciton dissociation in photocatalytic processes, the role of a built-in piezoelectric field, and negative magnetoresistance in promoting photoinduced charge transfer and separation are emphasized. This review provides insights into the potential challenges associated with leveraging the electric effects of carriers to reinforce photocatalysis. Recent studies on enhancing charge carrier behavior through electric effects for efficient photocatalysis are summarized, evaluating the in-depth function of these effects. This provides unique perspectives to optimize photocatalytic processes.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d4ee01379d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Charge efficiency ; Charge transfer ; Current carriers ; Electric charge ; Energy charge ; Energy conversion ; Energy conversion efficiency ; Energy of dissociation ; Excitons ; Magnetoresistance ; Magnetoresistivity ; Photocatalysis ; Piezoelectricity ; Solar energy ; Solar energy conversion</subject><ispartof>Energy &amp; environmental science, 2024-07, Vol.17 (14), p.497-4928</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-b89c769c93aae3990109712d0cdd56074baf16c92f89f094a65983a887638c723</cites><orcidid>0000-0002-5926-5383 ; 0000-0001-6226-4085 ; 0000-0002-2066-1856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Shu, Aoqiang</creatorcontrib><creatorcontrib>Qin, Chencheng</creatorcontrib><creatorcontrib>Li, Miao</creatorcontrib><creatorcontrib>Zhao, Luna</creatorcontrib><creatorcontrib>Shangguan, Zichen</creatorcontrib><creatorcontrib>Shu, Zihan</creatorcontrib><creatorcontrib>Yuan, Xingzhong</creatorcontrib><creatorcontrib>Zhu, Mingshan</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Wang, Hou</creatorcontrib><title>Electric effects reinforce charge carrier behaviour for photocatalysis</title><title>Energy &amp; environmental science</title><description>Photocatalysis is a highly efficient method for the conversion of solar energy and has shown great promise in mitigating the growing energy crisis and environmental pollution. However, achieving the desired solar energy conversion efficiency, which is directly limited by complex photoelectronic processes in the generation, transport, dissociation and recombination of charge carriers, is still a great challenge. These behaviors of charge carriers are considered to be dominated by electric effects. In this review, recent advances in the utilization of electric effects ( e.g. , piezoelectric effect, magnetoresistance effect, and excitonic effect) of charge carriers are discussed in relation to applications in photocatalytic processes. The mechanism of exciton dissociation in photocatalytic processes, the role of a built-in piezoelectric field, and negative magnetoresistance in promoting photoinduced charge transfer and separation are emphasized. This review provides insights into the potential challenges associated with leveraging the electric effects of carriers to reinforce photocatalysis. Recent studies on enhancing charge carrier behavior through electric effects for efficient photocatalysis are summarized, evaluating the in-depth function of these effects. This provides unique perspectives to optimize photocatalytic processes.</description><subject>Charge efficiency</subject><subject>Charge transfer</subject><subject>Current carriers</subject><subject>Electric charge</subject><subject>Energy charge</subject><subject>Energy conversion</subject><subject>Energy conversion efficiency</subject><subject>Energy of dissociation</subject><subject>Excitons</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Photocatalysis</subject><subject>Piezoelectricity</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKsX78KCN2F1sskmmaO0WxUKXvS8ZLOJ3VK7dbIV-u8brR-n94V5mBkexi453HIQeNdK74ELje0RG3FdyrzUoI5_u8LilJ3FuARQBWgcsVm18m6gzmU-hNRiRr5bh56cz9zC0lsKS9R5yhq_sJ9dv6UsjbPNoh96Zwe72sUunrOTYFfRX_zkmL3OqpfJYz5_fnia3M9zxzUMeWPQaYUOhbVeIAIH1LxowbVtqUDLxgauHBbBYACUVpVohDVGK2GcLsSYXR_2bqj_2Po41Mv00DqdrAUYzrVEJRN1c6Ac9TGSD_WGundLu5pD_eWpnsqq-vY0TfDVAabo_rh_j2IPVnxj9A</recordid><startdate>20240716</startdate><enddate>20240716</enddate><creator>Shu, Aoqiang</creator><creator>Qin, Chencheng</creator><creator>Li, Miao</creator><creator>Zhao, Luna</creator><creator>Shangguan, Zichen</creator><creator>Shu, Zihan</creator><creator>Yuan, Xingzhong</creator><creator>Zhu, Mingshan</creator><creator>Wu, Yan</creator><creator>Wang, Hou</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5926-5383</orcidid><orcidid>https://orcid.org/0000-0001-6226-4085</orcidid><orcidid>https://orcid.org/0000-0002-2066-1856</orcidid></search><sort><creationdate>20240716</creationdate><title>Electric effects reinforce charge carrier behaviour for photocatalysis</title><author>Shu, Aoqiang ; Qin, Chencheng ; Li, Miao ; Zhao, Luna ; Shangguan, Zichen ; Shu, Zihan ; Yuan, Xingzhong ; Zhu, Mingshan ; Wu, Yan ; Wang, Hou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-b89c769c93aae3990109712d0cdd56074baf16c92f89f094a65983a887638c723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge efficiency</topic><topic>Charge transfer</topic><topic>Current carriers</topic><topic>Electric charge</topic><topic>Energy charge</topic><topic>Energy conversion</topic><topic>Energy conversion efficiency</topic><topic>Energy of dissociation</topic><topic>Excitons</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Photocatalysis</topic><topic>Piezoelectricity</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Aoqiang</creatorcontrib><creatorcontrib>Qin, Chencheng</creatorcontrib><creatorcontrib>Li, Miao</creatorcontrib><creatorcontrib>Zhao, Luna</creatorcontrib><creatorcontrib>Shangguan, Zichen</creatorcontrib><creatorcontrib>Shu, Zihan</creatorcontrib><creatorcontrib>Yuan, Xingzhong</creatorcontrib><creatorcontrib>Zhu, Mingshan</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Wang, Hou</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Aoqiang</au><au>Qin, Chencheng</au><au>Li, Miao</au><au>Zhao, Luna</au><au>Shangguan, Zichen</au><au>Shu, Zihan</au><au>Yuan, Xingzhong</au><au>Zhu, Mingshan</au><au>Wu, Yan</au><au>Wang, Hou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric effects reinforce charge carrier behaviour for photocatalysis</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2024-07-16</date><risdate>2024</risdate><volume>17</volume><issue>14</issue><spage>497</spage><epage>4928</epage><pages>497-4928</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Photocatalysis is a highly efficient method for the conversion of solar energy and has shown great promise in mitigating the growing energy crisis and environmental pollution. However, achieving the desired solar energy conversion efficiency, which is directly limited by complex photoelectronic processes in the generation, transport, dissociation and recombination of charge carriers, is still a great challenge. These behaviors of charge carriers are considered to be dominated by electric effects. In this review, recent advances in the utilization of electric effects ( e.g. , piezoelectric effect, magnetoresistance effect, and excitonic effect) of charge carriers are discussed in relation to applications in photocatalytic processes. The mechanism of exciton dissociation in photocatalytic processes, the role of a built-in piezoelectric field, and negative magnetoresistance in promoting photoinduced charge transfer and separation are emphasized. This review provides insights into the potential challenges associated with leveraging the electric effects of carriers to reinforce photocatalysis. Recent studies on enhancing charge carrier behavior through electric effects for efficient photocatalysis are summarized, evaluating the in-depth function of these effects. This provides unique perspectives to optimize photocatalytic processes.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ee01379d</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-5926-5383</orcidid><orcidid>https://orcid.org/0000-0001-6226-4085</orcidid><orcidid>https://orcid.org/0000-0002-2066-1856</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2024-07, Vol.17 (14), p.497-4928
issn 1754-5692
1754-5706
language eng
recordid cdi_crossref_primary_10_1039_D4EE01379D
source Royal Society Of Chemistry Journals 2008-
subjects Charge efficiency
Charge transfer
Current carriers
Electric charge
Energy charge
Energy conversion
Energy conversion efficiency
Energy of dissociation
Excitons
Magnetoresistance
Magnetoresistivity
Photocatalysis
Piezoelectricity
Solar energy
Solar energy conversion
title Electric effects reinforce charge carrier behaviour for photocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20effects%20reinforce%20charge%20carrier%20behaviour%20for%20photocatalysis&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Shu,%20Aoqiang&rft.date=2024-07-16&rft.volume=17&rft.issue=14&rft.spage=497&rft.epage=4928&rft.pages=497-4928&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d4ee01379d&rft_dat=%3Cproquest_cross%3E3081174964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081174964&rft_id=info:pmid/&rfr_iscdi=true