Electric effects reinforce charge carrier behaviour for photocatalysis
Photocatalysis is a highly efficient method for the conversion of solar energy and has shown great promise in mitigating the growing energy crisis and environmental pollution. However, achieving the desired solar energy conversion efficiency, which is directly limited by complex photoelectronic proc...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2024-07, Vol.17 (14), p.497-4928 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4928 |
---|---|
container_issue | 14 |
container_start_page | 497 |
container_title | Energy & environmental science |
container_volume | 17 |
creator | Shu, Aoqiang Qin, Chencheng Li, Miao Zhao, Luna Shangguan, Zichen Shu, Zihan Yuan, Xingzhong Zhu, Mingshan Wu, Yan Wang, Hou |
description | Photocatalysis is a highly efficient method for the conversion of solar energy and has shown great promise in mitigating the growing energy crisis and environmental pollution. However, achieving the desired solar energy conversion efficiency, which is directly limited by complex photoelectronic processes in the generation, transport, dissociation and recombination of charge carriers, is still a great challenge. These behaviors of charge carriers are considered to be dominated by electric effects. In this review, recent advances in the utilization of electric effects (
e.g.
, piezoelectric effect, magnetoresistance effect, and excitonic effect) of charge carriers are discussed in relation to applications in photocatalytic processes. The mechanism of exciton dissociation in photocatalytic processes, the role of a built-in piezoelectric field, and negative magnetoresistance in promoting photoinduced charge transfer and separation are emphasized. This review provides insights into the potential challenges associated with leveraging the electric effects of carriers to reinforce photocatalysis.
Recent studies on enhancing charge carrier behavior through electric effects for efficient photocatalysis are summarized, evaluating the in-depth function of these effects. This provides unique perspectives to optimize photocatalytic processes. |
doi_str_mv | 10.1039/d4ee01379d |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4EE01379D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081174964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-b89c769c93aae3990109712d0cdd56074baf16c92f89f094a65983a887638c723</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKsX78KCN2F1sskmmaO0WxUKXvS8ZLOJ3VK7dbIV-u8brR-n94V5mBkexi453HIQeNdK74ELje0RG3FdyrzUoI5_u8LilJ3FuARQBWgcsVm18m6gzmU-hNRiRr5bh56cz9zC0lsKS9R5yhq_sJ9dv6UsjbPNoh96Zwe72sUunrOTYFfRX_zkmL3OqpfJYz5_fnia3M9zxzUMeWPQaYUOhbVeIAIH1LxowbVtqUDLxgauHBbBYACUVpVohDVGK2GcLsSYXR_2bqj_2Po41Mv00DqdrAUYzrVEJRN1c6Ac9TGSD_WGundLu5pD_eWpnsqq-vY0TfDVAabo_rh_j2IPVnxj9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081174964</pqid></control><display><type>article</type><title>Electric effects reinforce charge carrier behaviour for photocatalysis</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Shu, Aoqiang ; Qin, Chencheng ; Li, Miao ; Zhao, Luna ; Shangguan, Zichen ; Shu, Zihan ; Yuan, Xingzhong ; Zhu, Mingshan ; Wu, Yan ; Wang, Hou</creator><creatorcontrib>Shu, Aoqiang ; Qin, Chencheng ; Li, Miao ; Zhao, Luna ; Shangguan, Zichen ; Shu, Zihan ; Yuan, Xingzhong ; Zhu, Mingshan ; Wu, Yan ; Wang, Hou</creatorcontrib><description>Photocatalysis is a highly efficient method for the conversion of solar energy and has shown great promise in mitigating the growing energy crisis and environmental pollution. However, achieving the desired solar energy conversion efficiency, which is directly limited by complex photoelectronic processes in the generation, transport, dissociation and recombination of charge carriers, is still a great challenge. These behaviors of charge carriers are considered to be dominated by electric effects. In this review, recent advances in the utilization of electric effects (
e.g.
, piezoelectric effect, magnetoresistance effect, and excitonic effect) of charge carriers are discussed in relation to applications in photocatalytic processes. The mechanism of exciton dissociation in photocatalytic processes, the role of a built-in piezoelectric field, and negative magnetoresistance in promoting photoinduced charge transfer and separation are emphasized. This review provides insights into the potential challenges associated with leveraging the electric effects of carriers to reinforce photocatalysis.
Recent studies on enhancing charge carrier behavior through electric effects for efficient photocatalysis are summarized, evaluating the in-depth function of these effects. This provides unique perspectives to optimize photocatalytic processes.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d4ee01379d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Charge efficiency ; Charge transfer ; Current carriers ; Electric charge ; Energy charge ; Energy conversion ; Energy conversion efficiency ; Energy of dissociation ; Excitons ; Magnetoresistance ; Magnetoresistivity ; Photocatalysis ; Piezoelectricity ; Solar energy ; Solar energy conversion</subject><ispartof>Energy & environmental science, 2024-07, Vol.17 (14), p.497-4928</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-b89c769c93aae3990109712d0cdd56074baf16c92f89f094a65983a887638c723</cites><orcidid>0000-0002-5926-5383 ; 0000-0001-6226-4085 ; 0000-0002-2066-1856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Shu, Aoqiang</creatorcontrib><creatorcontrib>Qin, Chencheng</creatorcontrib><creatorcontrib>Li, Miao</creatorcontrib><creatorcontrib>Zhao, Luna</creatorcontrib><creatorcontrib>Shangguan, Zichen</creatorcontrib><creatorcontrib>Shu, Zihan</creatorcontrib><creatorcontrib>Yuan, Xingzhong</creatorcontrib><creatorcontrib>Zhu, Mingshan</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Wang, Hou</creatorcontrib><title>Electric effects reinforce charge carrier behaviour for photocatalysis</title><title>Energy & environmental science</title><description>Photocatalysis is a highly efficient method for the conversion of solar energy and has shown great promise in mitigating the growing energy crisis and environmental pollution. However, achieving the desired solar energy conversion efficiency, which is directly limited by complex photoelectronic processes in the generation, transport, dissociation and recombination of charge carriers, is still a great challenge. These behaviors of charge carriers are considered to be dominated by electric effects. In this review, recent advances in the utilization of electric effects (
e.g.
, piezoelectric effect, magnetoresistance effect, and excitonic effect) of charge carriers are discussed in relation to applications in photocatalytic processes. The mechanism of exciton dissociation in photocatalytic processes, the role of a built-in piezoelectric field, and negative magnetoresistance in promoting photoinduced charge transfer and separation are emphasized. This review provides insights into the potential challenges associated with leveraging the electric effects of carriers to reinforce photocatalysis.
Recent studies on enhancing charge carrier behavior through electric effects for efficient photocatalysis are summarized, evaluating the in-depth function of these effects. This provides unique perspectives to optimize photocatalytic processes.</description><subject>Charge efficiency</subject><subject>Charge transfer</subject><subject>Current carriers</subject><subject>Electric charge</subject><subject>Energy charge</subject><subject>Energy conversion</subject><subject>Energy conversion efficiency</subject><subject>Energy of dissociation</subject><subject>Excitons</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Photocatalysis</subject><subject>Piezoelectricity</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKsX78KCN2F1sskmmaO0WxUKXvS8ZLOJ3VK7dbIV-u8brR-n94V5mBkexi453HIQeNdK74ELje0RG3FdyrzUoI5_u8LilJ3FuARQBWgcsVm18m6gzmU-hNRiRr5bh56cz9zC0lsKS9R5yhq_sJ9dv6UsjbPNoh96Zwe72sUunrOTYFfRX_zkmL3OqpfJYz5_fnia3M9zxzUMeWPQaYUOhbVeIAIH1LxowbVtqUDLxgauHBbBYACUVpVohDVGK2GcLsSYXR_2bqj_2Po41Mv00DqdrAUYzrVEJRN1c6Ac9TGSD_WGundLu5pD_eWpnsqq-vY0TfDVAabo_rh_j2IPVnxj9A</recordid><startdate>20240716</startdate><enddate>20240716</enddate><creator>Shu, Aoqiang</creator><creator>Qin, Chencheng</creator><creator>Li, Miao</creator><creator>Zhao, Luna</creator><creator>Shangguan, Zichen</creator><creator>Shu, Zihan</creator><creator>Yuan, Xingzhong</creator><creator>Zhu, Mingshan</creator><creator>Wu, Yan</creator><creator>Wang, Hou</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5926-5383</orcidid><orcidid>https://orcid.org/0000-0001-6226-4085</orcidid><orcidid>https://orcid.org/0000-0002-2066-1856</orcidid></search><sort><creationdate>20240716</creationdate><title>Electric effects reinforce charge carrier behaviour for photocatalysis</title><author>Shu, Aoqiang ; Qin, Chencheng ; Li, Miao ; Zhao, Luna ; Shangguan, Zichen ; Shu, Zihan ; Yuan, Xingzhong ; Zhu, Mingshan ; Wu, Yan ; Wang, Hou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-b89c769c93aae3990109712d0cdd56074baf16c92f89f094a65983a887638c723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge efficiency</topic><topic>Charge transfer</topic><topic>Current carriers</topic><topic>Electric charge</topic><topic>Energy charge</topic><topic>Energy conversion</topic><topic>Energy conversion efficiency</topic><topic>Energy of dissociation</topic><topic>Excitons</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Photocatalysis</topic><topic>Piezoelectricity</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Aoqiang</creatorcontrib><creatorcontrib>Qin, Chencheng</creatorcontrib><creatorcontrib>Li, Miao</creatorcontrib><creatorcontrib>Zhao, Luna</creatorcontrib><creatorcontrib>Shangguan, Zichen</creatorcontrib><creatorcontrib>Shu, Zihan</creatorcontrib><creatorcontrib>Yuan, Xingzhong</creatorcontrib><creatorcontrib>Zhu, Mingshan</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Wang, Hou</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Aoqiang</au><au>Qin, Chencheng</au><au>Li, Miao</au><au>Zhao, Luna</au><au>Shangguan, Zichen</au><au>Shu, Zihan</au><au>Yuan, Xingzhong</au><au>Zhu, Mingshan</au><au>Wu, Yan</au><au>Wang, Hou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric effects reinforce charge carrier behaviour for photocatalysis</atitle><jtitle>Energy & environmental science</jtitle><date>2024-07-16</date><risdate>2024</risdate><volume>17</volume><issue>14</issue><spage>497</spage><epage>4928</epage><pages>497-4928</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Photocatalysis is a highly efficient method for the conversion of solar energy and has shown great promise in mitigating the growing energy crisis and environmental pollution. However, achieving the desired solar energy conversion efficiency, which is directly limited by complex photoelectronic processes in the generation, transport, dissociation and recombination of charge carriers, is still a great challenge. These behaviors of charge carriers are considered to be dominated by electric effects. In this review, recent advances in the utilization of electric effects (
e.g.
, piezoelectric effect, magnetoresistance effect, and excitonic effect) of charge carriers are discussed in relation to applications in photocatalytic processes. The mechanism of exciton dissociation in photocatalytic processes, the role of a built-in piezoelectric field, and negative magnetoresistance in promoting photoinduced charge transfer and separation are emphasized. This review provides insights into the potential challenges associated with leveraging the electric effects of carriers to reinforce photocatalysis.
Recent studies on enhancing charge carrier behavior through electric effects for efficient photocatalysis are summarized, evaluating the in-depth function of these effects. This provides unique perspectives to optimize photocatalytic processes.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ee01379d</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-5926-5383</orcidid><orcidid>https://orcid.org/0000-0001-6226-4085</orcidid><orcidid>https://orcid.org/0000-0002-2066-1856</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2024-07, Vol.17 (14), p.497-4928 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D4EE01379D |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Charge efficiency Charge transfer Current carriers Electric charge Energy charge Energy conversion Energy conversion efficiency Energy of dissociation Excitons Magnetoresistance Magnetoresistivity Photocatalysis Piezoelectricity Solar energy Solar energy conversion |
title | Electric effects reinforce charge carrier behaviour for photocatalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20effects%20reinforce%20charge%20carrier%20behaviour%20for%20photocatalysis&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Shu,%20Aoqiang&rft.date=2024-07-16&rft.volume=17&rft.issue=14&rft.spage=497&rft.epage=4928&rft.pages=497-4928&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d4ee01379d&rft_dat=%3Cproquest_cross%3E3081174964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081174964&rft_id=info:pmid/&rfr_iscdi=true |