An ultra-high mass-loading transition metal phosphide electrocatalyst for efficient water splitting and ultra-durable zinc-air batteries

The development of sustainable energy conversion and storage technologies is an effective approach to relieve the increasingly severe global energy crisis. Herein, a facile reductive electrosynthesis approach, using Pluronic P123 as a structure-directing agent, is reported to prepare an electrically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2024-07, Vol.17 (14), p.52-5215
Hauptverfasser: Khodayar, Navid, Noori, Abolhassan, Rahmanifar, Mohammad S, Moloudi, Masumeh, Hassani, Nasim, Neek-Amal, Mehdi, El-Kady, Maher F, Mohamed, Nahla B, Xia, Xinhui, Zhang, Yongqi, Kaner, Richard B, Mousavi, Mir F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5215
container_issue 14
container_start_page 52
container_title Energy & environmental science
container_volume 17
creator Khodayar, Navid
Noori, Abolhassan
Rahmanifar, Mohammad S
Moloudi, Masumeh
Hassani, Nasim
Neek-Amal, Mehdi
El-Kady, Maher F
Mohamed, Nahla B
Xia, Xinhui
Zhang, Yongqi
Kaner, Richard B
Mousavi, Mir F
description The development of sustainable energy conversion and storage technologies is an effective approach to relieve the increasingly severe global energy crisis. Herein, a facile reductive electrosynthesis approach, using Pluronic P123 as a structure-directing agent, is reported to prepare an electrically conductive, electrochemically stable, and porous Ni-Co-Mn phosphide (NCMP) electrocatalyst with a super-high mass loading of 22.6 mg cm −2 , feasible for industrial-level applications. The NCMP electrocatalyst exhibits superior trifunctional electrocatalytic activities toward the hydrogen evolution reaction ( η j =10 = 100 mV), oxygen evolution reaction ( η j =50 = 218 mV), and oxygen reduction reaction (half-wave potential = 0.74 V vs. reversible hydrogen electrode) in alkaline electrolytes. The NCMP-based cell delivers an overall water-splitting voltage of 1.53 V at a rate of 10 mA cm −2 , which is lower than that of the benchmark Pt/C(−)-RuO 2 /C(+) system. The NCMP-based zinc-air battery exhibits a high power density of 148 mW cm 2 , a high specific energy of ∼932 W h kg Zn −1 , and excellent cycling stability of over 6000 cycles at 5 mA cm −2 . Mechanistic studies through theoretical calculations revealed that a trimetallic species formed by Ni, Co, and Mn is the most catalytically active site. It is anticipated that this novel reductive electrosynthesis approach may extend to other electrodeposition processes and pave the way to better meet the existing and expected energy demands. We demonstrate the practical applicability of Ni-Co-Mn-P as an efficient electrocatalyst active in all the HER, OER, and ORR processes even under an ultra-high mass loading of over 22 mg cm −2 .
doi_str_mv 10.1039/d4ee00042k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4EE00042K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081175119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-633af5c2324e6315cdd0c9eb6166ff6c862e986a84f2933fad9234fa121e1fd73</originalsourceid><addsrcrecordid>eNpFkV1LwzAYhYsoOKc33gsB74RqPtq0uRxzfuDAG70uWfJmzeyamqTI_AX-bDs39ep9OTycA-ckyTnB1wQzcaMzAIxxRt8OkhEp8izNC8wPf38u6HFyEsIKY05xIUbJ16RFfRO9TGu7rNFahpA2TmrbLtGgtsFG61q0higb1NUudLXVgKABFb1TcpA3ISLjPAJjrLLQRvQhI3gUusbGuDWSrd6H6N7LRQPo07YqldajhYwDayGcJkdGNgHO9necvN7NXqYP6fz5_nE6maeKEhJTzpg0uaKMZsAZyZXWWAlYcMK5MVyVnIIouSwzQwVjRmpBWWYkoQSI0QUbJ5c738679x5CrFau9-0QWTFckqEnQsRAXe0o5V0IHkzVebuWflMRXG2brm6z2eyn6acBvtjBPqg_7n8J9g1T_n2_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081175119</pqid></control><display><type>article</type><title>An ultra-high mass-loading transition metal phosphide electrocatalyst for efficient water splitting and ultra-durable zinc-air batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Khodayar, Navid ; Noori, Abolhassan ; Rahmanifar, Mohammad S ; Moloudi, Masumeh ; Hassani, Nasim ; Neek-Amal, Mehdi ; El-Kady, Maher F ; Mohamed, Nahla B ; Xia, Xinhui ; Zhang, Yongqi ; Kaner, Richard B ; Mousavi, Mir F</creator><creatorcontrib>Khodayar, Navid ; Noori, Abolhassan ; Rahmanifar, Mohammad S ; Moloudi, Masumeh ; Hassani, Nasim ; Neek-Amal, Mehdi ; El-Kady, Maher F ; Mohamed, Nahla B ; Xia, Xinhui ; Zhang, Yongqi ; Kaner, Richard B ; Mousavi, Mir F</creatorcontrib><description>The development of sustainable energy conversion and storage technologies is an effective approach to relieve the increasingly severe global energy crisis. Herein, a facile reductive electrosynthesis approach, using Pluronic P123 as a structure-directing agent, is reported to prepare an electrically conductive, electrochemically stable, and porous Ni-Co-Mn phosphide (NCMP) electrocatalyst with a super-high mass loading of 22.6 mg cm −2 , feasible for industrial-level applications. The NCMP electrocatalyst exhibits superior trifunctional electrocatalytic activities toward the hydrogen evolution reaction ( η j =10 = 100 mV), oxygen evolution reaction ( η j =50 = 218 mV), and oxygen reduction reaction (half-wave potential = 0.74 V vs. reversible hydrogen electrode) in alkaline electrolytes. The NCMP-based cell delivers an overall water-splitting voltage of 1.53 V at a rate of 10 mA cm −2 , which is lower than that of the benchmark Pt/C(−)-RuO 2 /C(+) system. The NCMP-based zinc-air battery exhibits a high power density of 148 mW cm 2 , a high specific energy of ∼932 W h kg Zn −1 , and excellent cycling stability of over 6000 cycles at 5 mA cm −2 . Mechanistic studies through theoretical calculations revealed that a trimetallic species formed by Ni, Co, and Mn is the most catalytically active site. It is anticipated that this novel reductive electrosynthesis approach may extend to other electrodeposition processes and pave the way to better meet the existing and expected energy demands. We demonstrate the practical applicability of Ni-Co-Mn-P as an efficient electrocatalyst active in all the HER, OER, and ORR processes even under an ultra-high mass loading of over 22 mg cm −2 .</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d4ee00042k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical reduction ; Electrocatalysts ; Electrolytes ; Energy conversion ; Energy storage ; Hydrogen evolution reactions ; Manganese ; Metal air batteries ; Nickel ; Oxygen evolution reactions ; Oxygen reduction reactions ; Phosphides ; Specific energy ; Sustainable development ; Sustainable energy ; Transition metals ; Water splitting ; Zinc-oxygen batteries</subject><ispartof>Energy &amp; environmental science, 2024-07, Vol.17 (14), p.52-5215</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-633af5c2324e6315cdd0c9eb6166ff6c862e986a84f2933fad9234fa121e1fd73</citedby><cites>FETCH-LOGICAL-c211t-633af5c2324e6315cdd0c9eb6166ff6c862e986a84f2933fad9234fa121e1fd73</cites><orcidid>0000-0002-5976-5337 ; 0000-0001-7277-6965 ; 0009-0002-3606-1107 ; 0000-0003-0345-4924 ; 0000-0001-7361-4298 ; 0000-0002-5386-1280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Khodayar, Navid</creatorcontrib><creatorcontrib>Noori, Abolhassan</creatorcontrib><creatorcontrib>Rahmanifar, Mohammad S</creatorcontrib><creatorcontrib>Moloudi, Masumeh</creatorcontrib><creatorcontrib>Hassani, Nasim</creatorcontrib><creatorcontrib>Neek-Amal, Mehdi</creatorcontrib><creatorcontrib>El-Kady, Maher F</creatorcontrib><creatorcontrib>Mohamed, Nahla B</creatorcontrib><creatorcontrib>Xia, Xinhui</creatorcontrib><creatorcontrib>Zhang, Yongqi</creatorcontrib><creatorcontrib>Kaner, Richard B</creatorcontrib><creatorcontrib>Mousavi, Mir F</creatorcontrib><title>An ultra-high mass-loading transition metal phosphide electrocatalyst for efficient water splitting and ultra-durable zinc-air batteries</title><title>Energy &amp; environmental science</title><description>The development of sustainable energy conversion and storage technologies is an effective approach to relieve the increasingly severe global energy crisis. Herein, a facile reductive electrosynthesis approach, using Pluronic P123 as a structure-directing agent, is reported to prepare an electrically conductive, electrochemically stable, and porous Ni-Co-Mn phosphide (NCMP) electrocatalyst with a super-high mass loading of 22.6 mg cm −2 , feasible for industrial-level applications. The NCMP electrocatalyst exhibits superior trifunctional electrocatalytic activities toward the hydrogen evolution reaction ( η j =10 = 100 mV), oxygen evolution reaction ( η j =50 = 218 mV), and oxygen reduction reaction (half-wave potential = 0.74 V vs. reversible hydrogen electrode) in alkaline electrolytes. The NCMP-based cell delivers an overall water-splitting voltage of 1.53 V at a rate of 10 mA cm −2 , which is lower than that of the benchmark Pt/C(−)-RuO 2 /C(+) system. The NCMP-based zinc-air battery exhibits a high power density of 148 mW cm 2 , a high specific energy of ∼932 W h kg Zn −1 , and excellent cycling stability of over 6000 cycles at 5 mA cm −2 . Mechanistic studies through theoretical calculations revealed that a trimetallic species formed by Ni, Co, and Mn is the most catalytically active site. It is anticipated that this novel reductive electrosynthesis approach may extend to other electrodeposition processes and pave the way to better meet the existing and expected energy demands. We demonstrate the practical applicability of Ni-Co-Mn-P as an efficient electrocatalyst active in all the HER, OER, and ORR processes even under an ultra-high mass loading of over 22 mg cm −2 .</description><subject>Chemical reduction</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Hydrogen evolution reactions</subject><subject>Manganese</subject><subject>Metal air batteries</subject><subject>Nickel</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen reduction reactions</subject><subject>Phosphides</subject><subject>Specific energy</subject><subject>Sustainable development</subject><subject>Sustainable energy</subject><subject>Transition metals</subject><subject>Water splitting</subject><subject>Zinc-oxygen batteries</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkV1LwzAYhYsoOKc33gsB74RqPtq0uRxzfuDAG70uWfJmzeyamqTI_AX-bDs39ep9OTycA-ckyTnB1wQzcaMzAIxxRt8OkhEp8izNC8wPf38u6HFyEsIKY05xIUbJ16RFfRO9TGu7rNFahpA2TmrbLtGgtsFG61q0higb1NUudLXVgKABFb1TcpA3ISLjPAJjrLLQRvQhI3gUusbGuDWSrd6H6N7LRQPo07YqldajhYwDayGcJkdGNgHO9necvN7NXqYP6fz5_nE6maeKEhJTzpg0uaKMZsAZyZXWWAlYcMK5MVyVnIIouSwzQwVjRmpBWWYkoQSI0QUbJ5c738679x5CrFau9-0QWTFckqEnQsRAXe0o5V0IHkzVebuWflMRXG2brm6z2eyn6acBvtjBPqg_7n8J9g1T_n2_</recordid><startdate>20240716</startdate><enddate>20240716</enddate><creator>Khodayar, Navid</creator><creator>Noori, Abolhassan</creator><creator>Rahmanifar, Mohammad S</creator><creator>Moloudi, Masumeh</creator><creator>Hassani, Nasim</creator><creator>Neek-Amal, Mehdi</creator><creator>El-Kady, Maher F</creator><creator>Mohamed, Nahla B</creator><creator>Xia, Xinhui</creator><creator>Zhang, Yongqi</creator><creator>Kaner, Richard B</creator><creator>Mousavi, Mir F</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5976-5337</orcidid><orcidid>https://orcid.org/0000-0001-7277-6965</orcidid><orcidid>https://orcid.org/0009-0002-3606-1107</orcidid><orcidid>https://orcid.org/0000-0003-0345-4924</orcidid><orcidid>https://orcid.org/0000-0001-7361-4298</orcidid><orcidid>https://orcid.org/0000-0002-5386-1280</orcidid></search><sort><creationdate>20240716</creationdate><title>An ultra-high mass-loading transition metal phosphide electrocatalyst for efficient water splitting and ultra-durable zinc-air batteries</title><author>Khodayar, Navid ; Noori, Abolhassan ; Rahmanifar, Mohammad S ; Moloudi, Masumeh ; Hassani, Nasim ; Neek-Amal, Mehdi ; El-Kady, Maher F ; Mohamed, Nahla B ; Xia, Xinhui ; Zhang, Yongqi ; Kaner, Richard B ; Mousavi, Mir F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-633af5c2324e6315cdd0c9eb6166ff6c862e986a84f2933fad9234fa121e1fd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical reduction</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Hydrogen evolution reactions</topic><topic>Manganese</topic><topic>Metal air batteries</topic><topic>Nickel</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen reduction reactions</topic><topic>Phosphides</topic><topic>Specific energy</topic><topic>Sustainable development</topic><topic>Sustainable energy</topic><topic>Transition metals</topic><topic>Water splitting</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khodayar, Navid</creatorcontrib><creatorcontrib>Noori, Abolhassan</creatorcontrib><creatorcontrib>Rahmanifar, Mohammad S</creatorcontrib><creatorcontrib>Moloudi, Masumeh</creatorcontrib><creatorcontrib>Hassani, Nasim</creatorcontrib><creatorcontrib>Neek-Amal, Mehdi</creatorcontrib><creatorcontrib>El-Kady, Maher F</creatorcontrib><creatorcontrib>Mohamed, Nahla B</creatorcontrib><creatorcontrib>Xia, Xinhui</creatorcontrib><creatorcontrib>Zhang, Yongqi</creatorcontrib><creatorcontrib>Kaner, Richard B</creatorcontrib><creatorcontrib>Mousavi, Mir F</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khodayar, Navid</au><au>Noori, Abolhassan</au><au>Rahmanifar, Mohammad S</au><au>Moloudi, Masumeh</au><au>Hassani, Nasim</au><au>Neek-Amal, Mehdi</au><au>El-Kady, Maher F</au><au>Mohamed, Nahla B</au><au>Xia, Xinhui</au><au>Zhang, Yongqi</au><au>Kaner, Richard B</au><au>Mousavi, Mir F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ultra-high mass-loading transition metal phosphide electrocatalyst for efficient water splitting and ultra-durable zinc-air batteries</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2024-07-16</date><risdate>2024</risdate><volume>17</volume><issue>14</issue><spage>52</spage><epage>5215</epage><pages>52-5215</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>The development of sustainable energy conversion and storage technologies is an effective approach to relieve the increasingly severe global energy crisis. Herein, a facile reductive electrosynthesis approach, using Pluronic P123 as a structure-directing agent, is reported to prepare an electrically conductive, electrochemically stable, and porous Ni-Co-Mn phosphide (NCMP) electrocatalyst with a super-high mass loading of 22.6 mg cm −2 , feasible for industrial-level applications. The NCMP electrocatalyst exhibits superior trifunctional electrocatalytic activities toward the hydrogen evolution reaction ( η j =10 = 100 mV), oxygen evolution reaction ( η j =50 = 218 mV), and oxygen reduction reaction (half-wave potential = 0.74 V vs. reversible hydrogen electrode) in alkaline electrolytes. The NCMP-based cell delivers an overall water-splitting voltage of 1.53 V at a rate of 10 mA cm −2 , which is lower than that of the benchmark Pt/C(−)-RuO 2 /C(+) system. The NCMP-based zinc-air battery exhibits a high power density of 148 mW cm 2 , a high specific energy of ∼932 W h kg Zn −1 , and excellent cycling stability of over 6000 cycles at 5 mA cm −2 . Mechanistic studies through theoretical calculations revealed that a trimetallic species formed by Ni, Co, and Mn is the most catalytically active site. It is anticipated that this novel reductive electrosynthesis approach may extend to other electrodeposition processes and pave the way to better meet the existing and expected energy demands. We demonstrate the practical applicability of Ni-Co-Mn-P as an efficient electrocatalyst active in all the HER, OER, and ORR processes even under an ultra-high mass loading of over 22 mg cm −2 .</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ee00042k</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5976-5337</orcidid><orcidid>https://orcid.org/0000-0001-7277-6965</orcidid><orcidid>https://orcid.org/0009-0002-3606-1107</orcidid><orcidid>https://orcid.org/0000-0003-0345-4924</orcidid><orcidid>https://orcid.org/0000-0001-7361-4298</orcidid><orcidid>https://orcid.org/0000-0002-5386-1280</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2024-07, Vol.17 (14), p.52-5215
issn 1754-5692
1754-5706
language eng
recordid cdi_crossref_primary_10_1039_D4EE00042K
source Royal Society Of Chemistry Journals 2008-
subjects Chemical reduction
Electrocatalysts
Electrolytes
Energy conversion
Energy storage
Hydrogen evolution reactions
Manganese
Metal air batteries
Nickel
Oxygen evolution reactions
Oxygen reduction reactions
Phosphides
Specific energy
Sustainable development
Sustainable energy
Transition metals
Water splitting
Zinc-oxygen batteries
title An ultra-high mass-loading transition metal phosphide electrocatalyst for efficient water splitting and ultra-durable zinc-air batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ultra-high%20mass-loading%20transition%20metal%20phosphide%20electrocatalyst%20for%20efficient%20water%20splitting%20and%20ultra-durable%20zinc-air%20batteries&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Khodayar,%20Navid&rft.date=2024-07-16&rft.volume=17&rft.issue=14&rft.spage=52&rft.epage=5215&rft.pages=52-5215&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d4ee00042k&rft_dat=%3Cproquest_cross%3E3081175119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081175119&rft_id=info:pmid/&rfr_iscdi=true