An ultra-high mass-loading transition metal phosphide electrocatalyst for efficient water splitting and ultra-durable zinc-air batteries
The development of sustainable energy conversion and storage technologies is an effective approach to relieve the increasingly severe global energy crisis. Herein, a facile reductive electrosynthesis approach, using Pluronic P123 as a structure-directing agent, is reported to prepare an electrically...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2024-07, Vol.17 (14), p.52-5215 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5215 |
---|---|
container_issue | 14 |
container_start_page | 52 |
container_title | Energy & environmental science |
container_volume | 17 |
creator | Khodayar, Navid Noori, Abolhassan Rahmanifar, Mohammad S Moloudi, Masumeh Hassani, Nasim Neek-Amal, Mehdi El-Kady, Maher F Mohamed, Nahla B Xia, Xinhui Zhang, Yongqi Kaner, Richard B Mousavi, Mir F |
description | The development of sustainable energy conversion and storage technologies is an effective approach to relieve the increasingly severe global energy crisis. Herein, a facile reductive electrosynthesis approach, using Pluronic P123 as a structure-directing agent, is reported to prepare an electrically conductive, electrochemically stable, and porous Ni-Co-Mn phosphide (NCMP) electrocatalyst with a super-high mass loading of 22.6 mg cm
−2
, feasible for industrial-level applications. The NCMP electrocatalyst exhibits superior trifunctional electrocatalytic activities toward the hydrogen evolution reaction (
η
j
=10
= 100 mV), oxygen evolution reaction (
η
j
=50
= 218 mV), and oxygen reduction reaction (half-wave potential = 0.74 V
vs.
reversible hydrogen electrode) in alkaline electrolytes. The NCMP-based cell delivers an overall water-splitting voltage of 1.53 V at a rate of 10 mA cm
−2
, which is lower than that of the benchmark Pt/C(−)-RuO
2
/C(+) system. The NCMP-based zinc-air battery exhibits a high power density of 148 mW cm
2
, a high specific energy of ∼932 W h kg
Zn
−1
, and excellent cycling stability of over 6000 cycles at 5 mA cm
−2
. Mechanistic studies through theoretical calculations revealed that a trimetallic species formed by Ni, Co, and Mn is the most catalytically active site. It is anticipated that this novel reductive electrosynthesis approach may extend to other electrodeposition processes and pave the way to better meet the existing and expected energy demands.
We demonstrate the practical applicability of Ni-Co-Mn-P as an efficient electrocatalyst active in all the HER, OER, and ORR processes even under an ultra-high mass loading of over 22 mg cm
−2
. |
doi_str_mv | 10.1039/d4ee00042k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D4EE00042K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081175119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-633af5c2324e6315cdd0c9eb6166ff6c862e986a84f2933fad9234fa121e1fd73</originalsourceid><addsrcrecordid>eNpFkV1LwzAYhYsoOKc33gsB74RqPtq0uRxzfuDAG70uWfJmzeyamqTI_AX-bDs39ep9OTycA-ckyTnB1wQzcaMzAIxxRt8OkhEp8izNC8wPf38u6HFyEsIKY05xIUbJ16RFfRO9TGu7rNFahpA2TmrbLtGgtsFG61q0higb1NUudLXVgKABFb1TcpA3ISLjPAJjrLLQRvQhI3gUusbGuDWSrd6H6N7LRQPo07YqldajhYwDayGcJkdGNgHO9necvN7NXqYP6fz5_nE6maeKEhJTzpg0uaKMZsAZyZXWWAlYcMK5MVyVnIIouSwzQwVjRmpBWWYkoQSI0QUbJ5c738679x5CrFau9-0QWTFckqEnQsRAXe0o5V0IHkzVebuWflMRXG2brm6z2eyn6acBvtjBPqg_7n8J9g1T_n2_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081175119</pqid></control><display><type>article</type><title>An ultra-high mass-loading transition metal phosphide electrocatalyst for efficient water splitting and ultra-durable zinc-air batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Khodayar, Navid ; Noori, Abolhassan ; Rahmanifar, Mohammad S ; Moloudi, Masumeh ; Hassani, Nasim ; Neek-Amal, Mehdi ; El-Kady, Maher F ; Mohamed, Nahla B ; Xia, Xinhui ; Zhang, Yongqi ; Kaner, Richard B ; Mousavi, Mir F</creator><creatorcontrib>Khodayar, Navid ; Noori, Abolhassan ; Rahmanifar, Mohammad S ; Moloudi, Masumeh ; Hassani, Nasim ; Neek-Amal, Mehdi ; El-Kady, Maher F ; Mohamed, Nahla B ; Xia, Xinhui ; Zhang, Yongqi ; Kaner, Richard B ; Mousavi, Mir F</creatorcontrib><description>The development of sustainable energy conversion and storage technologies is an effective approach to relieve the increasingly severe global energy crisis. Herein, a facile reductive electrosynthesis approach, using Pluronic P123 as a structure-directing agent, is reported to prepare an electrically conductive, electrochemically stable, and porous Ni-Co-Mn phosphide (NCMP) electrocatalyst with a super-high mass loading of 22.6 mg cm
−2
, feasible for industrial-level applications. The NCMP electrocatalyst exhibits superior trifunctional electrocatalytic activities toward the hydrogen evolution reaction (
η
j
=10
= 100 mV), oxygen evolution reaction (
η
j
=50
= 218 mV), and oxygen reduction reaction (half-wave potential = 0.74 V
vs.
reversible hydrogen electrode) in alkaline electrolytes. The NCMP-based cell delivers an overall water-splitting voltage of 1.53 V at a rate of 10 mA cm
−2
, which is lower than that of the benchmark Pt/C(−)-RuO
2
/C(+) system. The NCMP-based zinc-air battery exhibits a high power density of 148 mW cm
2
, a high specific energy of ∼932 W h kg
Zn
−1
, and excellent cycling stability of over 6000 cycles at 5 mA cm
−2
. Mechanistic studies through theoretical calculations revealed that a trimetallic species formed by Ni, Co, and Mn is the most catalytically active site. It is anticipated that this novel reductive electrosynthesis approach may extend to other electrodeposition processes and pave the way to better meet the existing and expected energy demands.
We demonstrate the practical applicability of Ni-Co-Mn-P as an efficient electrocatalyst active in all the HER, OER, and ORR processes even under an ultra-high mass loading of over 22 mg cm
−2
.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d4ee00042k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical reduction ; Electrocatalysts ; Electrolytes ; Energy conversion ; Energy storage ; Hydrogen evolution reactions ; Manganese ; Metal air batteries ; Nickel ; Oxygen evolution reactions ; Oxygen reduction reactions ; Phosphides ; Specific energy ; Sustainable development ; Sustainable energy ; Transition metals ; Water splitting ; Zinc-oxygen batteries</subject><ispartof>Energy & environmental science, 2024-07, Vol.17 (14), p.52-5215</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-633af5c2324e6315cdd0c9eb6166ff6c862e986a84f2933fad9234fa121e1fd73</citedby><cites>FETCH-LOGICAL-c211t-633af5c2324e6315cdd0c9eb6166ff6c862e986a84f2933fad9234fa121e1fd73</cites><orcidid>0000-0002-5976-5337 ; 0000-0001-7277-6965 ; 0009-0002-3606-1107 ; 0000-0003-0345-4924 ; 0000-0001-7361-4298 ; 0000-0002-5386-1280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Khodayar, Navid</creatorcontrib><creatorcontrib>Noori, Abolhassan</creatorcontrib><creatorcontrib>Rahmanifar, Mohammad S</creatorcontrib><creatorcontrib>Moloudi, Masumeh</creatorcontrib><creatorcontrib>Hassani, Nasim</creatorcontrib><creatorcontrib>Neek-Amal, Mehdi</creatorcontrib><creatorcontrib>El-Kady, Maher F</creatorcontrib><creatorcontrib>Mohamed, Nahla B</creatorcontrib><creatorcontrib>Xia, Xinhui</creatorcontrib><creatorcontrib>Zhang, Yongqi</creatorcontrib><creatorcontrib>Kaner, Richard B</creatorcontrib><creatorcontrib>Mousavi, Mir F</creatorcontrib><title>An ultra-high mass-loading transition metal phosphide electrocatalyst for efficient water splitting and ultra-durable zinc-air batteries</title><title>Energy & environmental science</title><description>The development of sustainable energy conversion and storage technologies is an effective approach to relieve the increasingly severe global energy crisis. Herein, a facile reductive electrosynthesis approach, using Pluronic P123 as a structure-directing agent, is reported to prepare an electrically conductive, electrochemically stable, and porous Ni-Co-Mn phosphide (NCMP) electrocatalyst with a super-high mass loading of 22.6 mg cm
−2
, feasible for industrial-level applications. The NCMP electrocatalyst exhibits superior trifunctional electrocatalytic activities toward the hydrogen evolution reaction (
η
j
=10
= 100 mV), oxygen evolution reaction (
η
j
=50
= 218 mV), and oxygen reduction reaction (half-wave potential = 0.74 V
vs.
reversible hydrogen electrode) in alkaline electrolytes. The NCMP-based cell delivers an overall water-splitting voltage of 1.53 V at a rate of 10 mA cm
−2
, which is lower than that of the benchmark Pt/C(−)-RuO
2
/C(+) system. The NCMP-based zinc-air battery exhibits a high power density of 148 mW cm
2
, a high specific energy of ∼932 W h kg
Zn
−1
, and excellent cycling stability of over 6000 cycles at 5 mA cm
−2
. Mechanistic studies through theoretical calculations revealed that a trimetallic species formed by Ni, Co, and Mn is the most catalytically active site. It is anticipated that this novel reductive electrosynthesis approach may extend to other electrodeposition processes and pave the way to better meet the existing and expected energy demands.
We demonstrate the practical applicability of Ni-Co-Mn-P as an efficient electrocatalyst active in all the HER, OER, and ORR processes even under an ultra-high mass loading of over 22 mg cm
−2
.</description><subject>Chemical reduction</subject><subject>Electrocatalysts</subject><subject>Electrolytes</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Hydrogen evolution reactions</subject><subject>Manganese</subject><subject>Metal air batteries</subject><subject>Nickel</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen reduction reactions</subject><subject>Phosphides</subject><subject>Specific energy</subject><subject>Sustainable development</subject><subject>Sustainable energy</subject><subject>Transition metals</subject><subject>Water splitting</subject><subject>Zinc-oxygen batteries</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkV1LwzAYhYsoOKc33gsB74RqPtq0uRxzfuDAG70uWfJmzeyamqTI_AX-bDs39ep9OTycA-ckyTnB1wQzcaMzAIxxRt8OkhEp8izNC8wPf38u6HFyEsIKY05xIUbJ16RFfRO9TGu7rNFahpA2TmrbLtGgtsFG61q0higb1NUudLXVgKABFb1TcpA3ISLjPAJjrLLQRvQhI3gUusbGuDWSrd6H6N7LRQPo07YqldajhYwDayGcJkdGNgHO9necvN7NXqYP6fz5_nE6maeKEhJTzpg0uaKMZsAZyZXWWAlYcMK5MVyVnIIouSwzQwVjRmpBWWYkoQSI0QUbJ5c738679x5CrFau9-0QWTFckqEnQsRAXe0o5V0IHkzVebuWflMRXG2brm6z2eyn6acBvtjBPqg_7n8J9g1T_n2_</recordid><startdate>20240716</startdate><enddate>20240716</enddate><creator>Khodayar, Navid</creator><creator>Noori, Abolhassan</creator><creator>Rahmanifar, Mohammad S</creator><creator>Moloudi, Masumeh</creator><creator>Hassani, Nasim</creator><creator>Neek-Amal, Mehdi</creator><creator>El-Kady, Maher F</creator><creator>Mohamed, Nahla B</creator><creator>Xia, Xinhui</creator><creator>Zhang, Yongqi</creator><creator>Kaner, Richard B</creator><creator>Mousavi, Mir F</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5976-5337</orcidid><orcidid>https://orcid.org/0000-0001-7277-6965</orcidid><orcidid>https://orcid.org/0009-0002-3606-1107</orcidid><orcidid>https://orcid.org/0000-0003-0345-4924</orcidid><orcidid>https://orcid.org/0000-0001-7361-4298</orcidid><orcidid>https://orcid.org/0000-0002-5386-1280</orcidid></search><sort><creationdate>20240716</creationdate><title>An ultra-high mass-loading transition metal phosphide electrocatalyst for efficient water splitting and ultra-durable zinc-air batteries</title><author>Khodayar, Navid ; Noori, Abolhassan ; Rahmanifar, Mohammad S ; Moloudi, Masumeh ; Hassani, Nasim ; Neek-Amal, Mehdi ; El-Kady, Maher F ; Mohamed, Nahla B ; Xia, Xinhui ; Zhang, Yongqi ; Kaner, Richard B ; Mousavi, Mir F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-633af5c2324e6315cdd0c9eb6166ff6c862e986a84f2933fad9234fa121e1fd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical reduction</topic><topic>Electrocatalysts</topic><topic>Electrolytes</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Hydrogen evolution reactions</topic><topic>Manganese</topic><topic>Metal air batteries</topic><topic>Nickel</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen reduction reactions</topic><topic>Phosphides</topic><topic>Specific energy</topic><topic>Sustainable development</topic><topic>Sustainable energy</topic><topic>Transition metals</topic><topic>Water splitting</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khodayar, Navid</creatorcontrib><creatorcontrib>Noori, Abolhassan</creatorcontrib><creatorcontrib>Rahmanifar, Mohammad S</creatorcontrib><creatorcontrib>Moloudi, Masumeh</creatorcontrib><creatorcontrib>Hassani, Nasim</creatorcontrib><creatorcontrib>Neek-Amal, Mehdi</creatorcontrib><creatorcontrib>El-Kady, Maher F</creatorcontrib><creatorcontrib>Mohamed, Nahla B</creatorcontrib><creatorcontrib>Xia, Xinhui</creatorcontrib><creatorcontrib>Zhang, Yongqi</creatorcontrib><creatorcontrib>Kaner, Richard B</creatorcontrib><creatorcontrib>Mousavi, Mir F</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khodayar, Navid</au><au>Noori, Abolhassan</au><au>Rahmanifar, Mohammad S</au><au>Moloudi, Masumeh</au><au>Hassani, Nasim</au><au>Neek-Amal, Mehdi</au><au>El-Kady, Maher F</au><au>Mohamed, Nahla B</au><au>Xia, Xinhui</au><au>Zhang, Yongqi</au><au>Kaner, Richard B</au><au>Mousavi, Mir F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ultra-high mass-loading transition metal phosphide electrocatalyst for efficient water splitting and ultra-durable zinc-air batteries</atitle><jtitle>Energy & environmental science</jtitle><date>2024-07-16</date><risdate>2024</risdate><volume>17</volume><issue>14</issue><spage>52</spage><epage>5215</epage><pages>52-5215</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>The development of sustainable energy conversion and storage technologies is an effective approach to relieve the increasingly severe global energy crisis. Herein, a facile reductive electrosynthesis approach, using Pluronic P123 as a structure-directing agent, is reported to prepare an electrically conductive, electrochemically stable, and porous Ni-Co-Mn phosphide (NCMP) electrocatalyst with a super-high mass loading of 22.6 mg cm
−2
, feasible for industrial-level applications. The NCMP electrocatalyst exhibits superior trifunctional electrocatalytic activities toward the hydrogen evolution reaction (
η
j
=10
= 100 mV), oxygen evolution reaction (
η
j
=50
= 218 mV), and oxygen reduction reaction (half-wave potential = 0.74 V
vs.
reversible hydrogen electrode) in alkaline electrolytes. The NCMP-based cell delivers an overall water-splitting voltage of 1.53 V at a rate of 10 mA cm
−2
, which is lower than that of the benchmark Pt/C(−)-RuO
2
/C(+) system. The NCMP-based zinc-air battery exhibits a high power density of 148 mW cm
2
, a high specific energy of ∼932 W h kg
Zn
−1
, and excellent cycling stability of over 6000 cycles at 5 mA cm
−2
. Mechanistic studies through theoretical calculations revealed that a trimetallic species formed by Ni, Co, and Mn is the most catalytically active site. It is anticipated that this novel reductive electrosynthesis approach may extend to other electrodeposition processes and pave the way to better meet the existing and expected energy demands.
We demonstrate the practical applicability of Ni-Co-Mn-P as an efficient electrocatalyst active in all the HER, OER, and ORR processes even under an ultra-high mass loading of over 22 mg cm
−2
.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ee00042k</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5976-5337</orcidid><orcidid>https://orcid.org/0000-0001-7277-6965</orcidid><orcidid>https://orcid.org/0009-0002-3606-1107</orcidid><orcidid>https://orcid.org/0000-0003-0345-4924</orcidid><orcidid>https://orcid.org/0000-0001-7361-4298</orcidid><orcidid>https://orcid.org/0000-0002-5386-1280</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2024-07, Vol.17 (14), p.52-5215 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D4EE00042K |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Chemical reduction Electrocatalysts Electrolytes Energy conversion Energy storage Hydrogen evolution reactions Manganese Metal air batteries Nickel Oxygen evolution reactions Oxygen reduction reactions Phosphides Specific energy Sustainable development Sustainable energy Transition metals Water splitting Zinc-oxygen batteries |
title | An ultra-high mass-loading transition metal phosphide electrocatalyst for efficient water splitting and ultra-durable zinc-air batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ultra-high%20mass-loading%20transition%20metal%20phosphide%20electrocatalyst%20for%20efficient%20water%20splitting%20and%20ultra-durable%20zinc-air%20batteries&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Khodayar,%20Navid&rft.date=2024-07-16&rft.volume=17&rft.issue=14&rft.spage=52&rft.epage=5215&rft.pages=52-5215&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d4ee00042k&rft_dat=%3Cproquest_cross%3E3081175119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081175119&rft_id=info:pmid/&rfr_iscdi=true |